
Important!
Read thoroughly before use!
Retain for future reference!

EtherCAT and CANopen manual

Contact
Motor Power Company S.r.l.
Via Leonardo Da Vinci, 4
42024 Castelnovo Sotto - Reggio Emilia
Italy

Tel +39 0522 682710
Fax +39 0522 683552
Email: info@motorpowerco.it
https://www.motorpowerco.com

Manufacturer:
Metronix Meßgeräte und Elektronik GmbH,
Kocherstraße 3, 38120 Braunschweig, Germany

Revision Information

Manual title EtherCAT and CANopen manual

Version 1.0

Year 2023

EtherCAT and CANopen manual Page 2 of 191

Table of Contents
1 About this manual 10
1.1 Structure of the warning notes 10
1.2 Notation in this manual 11

2 Quick-start guide 12
2.1 CANopen 12
2.1.1 Basics 12
2.1.2 Wiring and pin assignment 13
2.1.3 Wiring instructions 14
2.1.4 Status LEDs 15
2.1.5 Activate CANopen 16
2.1.6 Integration of the servo drive in a master project 18

2.2 EtherCAT 24
2.2.1 Basics 24
2.2.2 Wiring and pin assignment 25
2.2.3 Wiring instructions 26
2.2.4 Status LEDs (BL 4000-C) 27
2.2.5 Activate EtherCAT 27
2.2.6 Integration of the servo drive in a master project 28
2.2.7 EoE (Ethernet over EtherCAT®) 32
2.2.7.1 Activating EoE in the master 33
2.2.7.2 Configure Bridge 34

3 Parameterisation 36
3.1 Loading and saving parameter sets 38
3.1.1 Overview 38
3.1.2 Description of objects 39
3.1.2.1 Object 1011h: restore_default_parameters 39
3.1.2.2 Object 1010h: store_parameters 40

3.2 Compatibility settings 41
3.2.1 Overview 41
3.2.2 Description of objects 41
3.2.2.1 Object 6510h_F0h: compatibility_control 41

3.3 Factor Group 43
3.3.1 Overview 43
3.3.2 Parameterisation of the Factor Group 44
3.3.3 Description of objects 45
3.3.3.1 Object 6093h: position_factor 45
3.3.3.2 Object 6094h: velocity_encoder_factor 45
3.3.3.3 Object 6097h: acceleration_factor 46
3.3.3.4 Object 607Eh: polarity 46

3.4 Power stage parameters 47
3.4.1 Overview 47
3.4.2 Description of objects 47
3.4.2.1 Object 6510h_10h: enable_logic 47

EtherCAT and CANopen manual Page 3 of 191

3.4.2.2 Object 6510h_30h: pwm_frequency 48
3.4.2.3 Object 6510h_3Ah: enable_enhanced_modulation 49
3.4.2.4 Object 6510h_31h: power_stage_temperature 49
3.4.2.5 Object 6510h_32h: max_power_stage_temperature 50
3.4.2.6 Object 6510h_33h: nominal_dc_link_circuit_voltage 50
3.4.2.7 Object 6510h_34h: actual_dc_link_circuit_voltage 51
3.4.2.8 Object 6510h_35h: max_dc_link_circuit_voltage 51
3.4.2.9 Object 6510h_36h: min_dc_link_circuit_voltage 52
3.4.2.10 Object 6510h_37h: enable_dc_link_undervoltage_error 52
3.4.2.11 Object 6510h_40h: nominal_current 53
3.4.2.12 Object 6510h_41h: peak_current 53

3.5 Current controller and motor adaption 54
3.5.1 Overview 54
3.5.2 Description of objects 54
3.5.2.1 Object 6075h: motor_rated_current 54
3.5.2.2 Object 6073h: max_current 55
3.5.2.3 Object 604Dh: pole_number 55
3.5.2.4 Object 6410h_11h: encoder_offset_angle 55
3.5.2.5 Object 6410h_10h: phase_order 56
3.5.2.6 Object 6410h_03h: iit_time_motor 57
3.5.2.7 Object 6410h_04h: iit_ratio_motor 57
3.5.2.8 Object 6510h_3Dh: iit_ratio_servo 57
3.5.2.9 Object 6510h_38h: iit_error_enable 58
3.5.2.10 Object 6510h_2Eh: motor_temperature 58
3.5.2.11 Object 6410h_14h: motor_temperature_sensor_polarity 59
3.5.2.12 Object 6510h_2Fh: max_motor_temperature 59
3.5.2.13 Object 60F6h: torque_control_parameters 60
3.5.2.14 Object 203Ah: torque_feed_forward 60

3.6 Velocity controller 61
3.6.1 Overview 61
3.6.2 Description of objects 61
3.6.2.1 Object 60F9h: velocity_control_parameters 61
3.6.2.2 Object 2073h: velocity_display_filter_time 62

3.7 Position Controller 63
3.7.1 Overview 63
3.7.2 Description of objects 64
3.7.2.1 Object 60FBh: position_control_parameter_set 64
3.7.2.2 Object 6062h: position_demand_value 66
3.7.2.3 Object 202Dh: position_demand_sync_value 66
3.7.2.4 Object 6064h: position_actual_value 66
3.7.2.5 Object 6066h: following_error_time_out 66
3.7.2.6 Object 6065h: following_error_window 67
3.7.2.7 Object 60F4h: following_error_actual_value 67
3.7.2.8 Object 60FAh: control_effort 67
3.7.2.9 Object 6410h_0Fh: rotor_position 68

EtherCAT and CANopen manual Page 4 of 191

3.7.2.10 Object 6067h: position_window 68
3.7.2.11 Object 6068h: position_window_time 68
3.7.2.12 Object 6510h_22h: position_error_switch_off_limit 69
3.7.2.13 Object 2030h: set_position_absolute 69
3.7.2.14 Object 607Dh: software_position_limit 70
3.7.2.15 Object 607Bh: position_range_limit 70
3.7.2.16 Object 6510h_20h: position_range_limit_enable 71

3.8 Setpoint limitation 72
3.8.1 Object 2415h: current_limitation 72
3.8.2 Object 2416h: speed_limitation 73

3.9 Encoder adaptation 74
3.9.1 Overview 74
3.9.2 Description of objects 74
3.9.2.1 Object 2024h: encoder_x2a_data_field 74
3.9.2.2 Object 2026h: encoder_x2b_data_field 75
3.9.2.3 Object 2025h: encoder_x10_data_field 75
3.9.2.4 Object 202Ch: max_comm_enc_pos_enc_difference 76

3.10 Master frequency output 77
3.10.1 Overview 77
3.10.2 Description of objects 77
3.10.2.1 Object 201Ah: encoder_emulation_data 77
3.10.2.2 Object 2028h: encoder_emulation_resolution 77

3.11 Setpoint / actual value selection 78
3.11.1 Overview 78
3.11.2 Description of objects 78
3.11.2.1 Object 201Fh: commutation_encoder_select 78
3.11.2.2 Object 2021h: position_encoder_selection 79
3.11.2.3 Object 2022h: synchronisation_encoder_selection 79
3.11.2.4 Object 202Fh: synchronisation_selector_data 80
3.11.2.5 Object 2023h: synchronisation_filter_time 80

3.12 Analogue inputs 81
3.12.1 Overview 81
3.12.2 Description of objects 81
3.12.2.1 Object 2400h: analog_input_voltage 81
3.12.2.2 Object 2401h: analog_input_offset 82

3.13 Digital inputs and outputs 83
3.13.1 Overview 83
3.13.2 Description of objects 83
3.13.2.1 Object 60FDh: digital_inputs 83
3.13.2.2 Object 60FEh: digital_outputs 83
3.13.2.3 Object 2420h: digital_output_state_mapping 84

3.14 Limit switch / Reference switch 86
3.14.1 Overview 86
3.14.2 Description of objects 86
3.14.2.1 Object 6510h_11h: limit_switch_polarity 86

EtherCAT and CANopen manual Page 5 of 191

3.14.2.2 Object 6510h_12h: limit_switch_selector 87
3.14.2.3 Object 6510h_15h: limit_switch_deceleration 87
3.14.2.4 Object 6510h_14h: homing_switch_polarity 88
3.14.2.5 Object 6510h_13h: homing_switch_selector 88

3.15 Position capturing (Sampling) 89
3.15.1 Overview 89
3.15.2 Description of objects 89
3.15.2.1 Object 204Ah: sample_data 89

3.16 Brake control 92
3.16.1 Overview 92
3.16.2 Description of objects 92
3.16.2.1 Object 6510h_18h: brake_delay_time 92

3.17 Device information 93
3.17.1 Description of objects 93
3.17.1.1 Object 1000h: device_type 93
3.17.1.2 Object 1008h: manufacturer_device_name 93
3.17.1.3 Object 1009h: manufacturer_hardware_version 93
3.17.1.4 Object 100Ah: manufacturer_software_version 94
3.17.1.5 Object 1018h: identity_object 94
3.17.1.6 Object 6510h_A0h: drive_serial_number 95
3.17.1.7 Object 6510h_A1h: drive_type 96
3.17.1.8 Object 6510h_A9h: firmware_main_version 96
3.17.1.9 Object 6510h_AAh: firmware_custom_version 96
3.17.1.10 Object 6510h_ADh: km_release 97
3.17.1.11 Object 6510h_ACh: firmware_type 97
3.17.1.12 Object 6510h_B0h: cycletime_current_controller 97
3.17.1.13 Object 6510h_B1h: cycletime_velocity_controller 98
3.17.1.14 Object 6510h_B2h: cycletime_position_controller 98
3.17.1.15 Object 6510h_B3h: cycletime_trajectory_generator 98
3.17.1.16 Object 6510h_C0h: commissioning_state 99
3.17.1.17 Object 20FDh: user_device_name 99

3.18 Error management 100
3.18.1 Overview 100
3.18.2 Description of objects 100
3.18.2.1 Object 2100h: error_management 100
3.18.2.2 Object 200Fh: last_warning_code 101

4 Device Control 102
4.1 Overview 102
4.2 State Machine 103
4.2.1 State diagram: States 105
4.2.2 State diagram: State transitions 105

4.3 controlword 108
4.4 Reading the servo drive status 111
4.5 Statuswords 112
4.5.1 Object 6041h: statusword 112

EtherCAT and CANopen manual Page 6 of 191

4.5.2 Object 2000h: manufacturer_statuswords 115
4.5.3 Object 2005h: manufacturer_status_masks 118
4.5.4 Object 200Ah: manufacturer_status_invert 118
4.5.5 Object 2001h: manufacturer_warnings 118
4.5.6 Object 2006h: manufacturer_warning_masks 119

4.6 Description of further objects 120
4.6.1 Object 605Bh: shutdown_option_code 120
4.6.2 Object 605Ch: disable_operation_option_code 120
4.6.3 Object 605Ah: quick_stop_option_code 120
4.6.4 Object 605Eh: fault_reaction_option_code 121

5 Operating modes 122
5.1 Setting the operating mode 122
5.1.1 Overview 122
5.1.2 Description of objects 122
5.1.2.1 Object 6060h: modes_of_operation 122
5.1.2.2 Object 6061h: modes_of_operation_display 123

5.2 Homing Mode 124
5.2.1 Overview 124
5.2.2 Description of objects 125
5.2.2.1 Important objects in other sections 125
5.2.2.2 Object 607Ch: home_offset 125
5.2.2.3 Object 6098h: homing_method 125
5.2.2.4 Object 6099h: homing_speeds 126
5.2.2.5 Object 609Ah: homing_acceleration 127
5.2.2.6 Object 2045h: homing_timeout 127

5.2.3 Homing sequences 128
5.2.3.1 Methods -17 and -18: Stop 128
5.2.3.2 Methods -1 and -2: stop with index pulse evaluation 128
5.2.3.3 Methods 17 and 18: positive and negative limit switch 129
5.2.3.4 Methods 1 and 2: positive and negative limit switch with index pulse evaluation 129
5.2.3.5 Methods 23 and 27: reference switch 130
5.2.3.6 Methods 7 and 11: reference switch and index pulse evaluation 131
5.2.3.7 Methods -23 and -27: homing run (positive/negative) to the reference switch 132
5.2.3.8 Methods 32 and 33: homing to the index pulse 132
5.2.3.9 Method 34: homing to the current position 132

5.2.4 Homing control 133
5.3 Profile Position Mode 134
5.3.1 Overview 134
5.3.2 Functional description 134
5.3.3 Description of objects 136
5.3.3.1 Important objects in other sections 136
5.3.3.2 Object 607Ah: target_position 136
5.3.3.3 Object 6081h: profile_velocity 136
5.3.3.4 Object 6082h: end_velocity 137
5.3.3.5 Object 6083h: profile_acceleration 137

EtherCAT and CANopen manual Page 7 of 191

5.3.3.6 Object 6084h: profile_deceleration 137
5.3.3.7 Object 6085h: quick_stop_deceleration 137
5.3.3.8 Object 6086h: motion_profile_type 138

5.4 Interpolated Position Mode 139
5.4.1 Overview 139
5.4.2 Functional description 139
5.4.3 Description of objects 142
5.4.3.1 Important objects in other sections 142
5.4.3.2 Object 60C0h: interpolation_submode_select 142
5.4.3.3 Object 60C1h: interpolation_data_record 143
5.4.3.4 Object 60C2h: interpolation_time_period 143
5.4.3.5 Object 60C3h: interpolation_sync_definition 144
5.4.3.6 Object 60C4h: interpolation_data_configuration 145
5.4.3.7 Object 1006h: communication_cycle_period 146

5.5 Cyclic Synchronous Position Mode 147
5.5.1 Overview 147
5.5.2 Description of objects 147
5.5.2.1 Important objects in other sections 147

5.6 Profile Velocity Mode 148
5.6.1 Overview 148
5.6.2 Description of objects 149
5.6.2.1 Important objects in other sections 149
5.6.2.2 Object 6069h: velocity_sensor_actual_value 150
5.6.2.3 Object 606Ah: sensor_selection_code 150
5.6.2.4 Object 606Bh: velocity_demand_value 150
5.6.2.5 Object 202Eh: velocity_demand_sync_value 150
5.6.2.6 Object 606Ch: velocity_actual_value 151
5.6.2.7 Object 2074h: velocity_actual_value_filtered 151
5.6.2.8 Object 606Dh: velocity_window 152
5.6.2.9 Object 606Eh: velocity_window_time 152
5.6.2.10 Object 606Fh: velocity_threshold 152
5.6.2.11 Object 6070h: velocity_threshold_time 153
5.6.2.12 Object 6080h: max_motor_speed 153
5.6.2.13 Object 60FFh: target_velocity 153
5.6.2.14 Speed ramps 154

5.7 Profile Torque Mode 156
5.7.1 Overview 156
5.7.2 Description of objects 157
5.7.2.1 Important objects from other sections 157
5.7.2.2 Object 6071h: target_torque 157
5.7.2.3 Object 6072h: max_torque 157
5.7.2.4 Object 6074h: torque_demand_value 157
5.7.2.5 Object 6076h: motor_rated_torque 158
5.7.2.6 Object 6077h: torque_actual_value 158
5.7.2.7 Object 6078h: current_actual_value 158

EtherCAT and CANopen manual Page 8 of 191

5.7.2.8 Object 6079h: dc_link_circuit_voltage 158
5.7.2.9 Object 6087h: torque_slope 159
5.7.2.10 Object 6088h: torque_profile_type 159

6 Detailed description of the CANopen protocol 160
6.1 Introduction 160
6.2 Access via SDO 161
6.2.1 SDO sequences for reading and writing 162
6.2.2 SDO error response (abort codes) 163
6.2.3 Simulation of SDO accesses 164

6.3 Access via PDO 165
6.3.1 Description of objects 166
6.3.2 Objects for PDO configuration 168
6.3.3 Activation of PDOs 173

6.4 EMERGENCYmessage 174
6.4.1 Overview 174
6.4.2 Structure of the EMERGENCYmessage 175
6.4.3 Description of objects 175

6.5 SYNCmessage 176
6.6 Network Management (NMT service) 177
6.7 Bootup 180
6.7.1 Overview 180
6.7.2 Structure of the Bootup message 180

6.8 Heartbeat (Error Control Protocol) 180
6.8.1 Overview 180
6.8.2 Structure of the Heartbeat message 181
6.8.3 Description of objects 181

6.9 Nodeguarding (Error Control Protocol) 182
6.9.1 Overview 182
6.9.2 Structure of the Nodeguarding messages 182
6.9.3 Description of objects 183
6.9.3.1 Object 100Ch: guard_time 183
6.9.3.2 Object 100Dh: life_time_factor 183

6.10 Table of identifiers 184
7 Appendix 185
7.1 CANopen 185
7.2 Characteristics of the CAN interface 185
7.3 Error codes of the EMERGENCYmessage 186

EtherCAT and CANopen manual Page 9 of 191

1 About this manual

1 About this manual
This manual describes how the servo drives of the BL 4000-C or BL 4000-M / BL 4000-D
device series can be integrated into a CANopen or Ethercat network. The physical
connection, activation of the fieldbus protocol, integration into the network and the
parameters for adaptation to the respective application are described. It is intended for
persons who are already familiar with the respective servo drive series and have read
and understood the corresponding product manual.
The product manual contains instructions for the proper and professional transport,
storage, assembly, installation, project planning and correct and safe operation of the
servo drive.
The product manual contains safety instructions which must be strictly
observed.
The product manuals are available for download on our homepage
(https://www.motorpowerco.com).

1.1 Structure of the warning notes
Warning notes have the following structure:

l Signal word
l Type of hazard
l Measures to prevent the hazard

Signal words

Indicates an imminent hazard.
If the situation is not avoided, extremely serious and possibly fatal injuries will result.

Indicates a potentially hazardous situation.
If the situation is not avoided, extremely serious and possibly fatal injuries may result.

Indicates a potentially hazardous situation.
If the situation is not avoided, slight or minor injuries may result.

Warns against damage to property.

Warning signs as per ISO 7010
Warning sign Explanation

Warning against fatal electric voltage.

EtherCAT and CANopen manual Page 10 of 191

1 About this manual

1.2 Notation in this manual

Structure of notes
The notes in this manual have the following structure:

l Signal word "NOTE"
l Introductory phrase
l Explanations and special tips

Operating elements, menus
Operating elements, menus and menu paths are written in red.
Example: Double-clicking the desired device or clicking the button
Establish connection will establish an online connection.

CAN Objects, bit constants
Terms from the CANopen standards such as parameter names (CAN objects) are
written in dark red. Bit constants are highlighted by a different font.
Example: If this bit is set, bit 4 of the statusword (voltage_enabled) is output
according to DSP 402 v2.0.

States, commands
Servo drive states (see section 4 Device Control on page 102) are set in a different font
and are capitalised. Commands are highlighted with a white box.
Example:
NOT_READY_TO_SWITCH_ON The servo drive carries out a self-test.

4 Enable Operation 1 1 1 1 Motor control according to the current
operating mode

EtherCAT and CANopen manual Page 11 of 191

2 Quick-start guide

2 Quick-start guide
This chapter describes how to connect the servo drives to a commercially available
CANopen or Ethercat controller and put them into operation in order to obtain a quick
setup for starting application development. Depending on which fieldbus interface is
used, the respective other chapter can be skipped.
Section 3 Parameterisation on page 36 then describes all available parameters, which
can usually be used equally under CANopen and EtherCAT, in order to adapt the servo
drive to the respective application. This chapter is intended for users who already have
an industrial controller.

2.1 CANopen
CANopen is a standard maintained by the association "CAN in Automation", which
defines the use of CAN in automation technology independently of manufacturers. The
CANopen interface in the BL 4000 is designed according to CiA 301 (transmission layer)
and CiA 402 (drive controller profile).

2.1.1 Basics
The CANopen fieldbus protocol defines how data is exchanged via the CAN fieldbus in
industrial automation.
In general, there are two types of messages (communication objects) that are
exchanged between the master (e.g. CoDeSys controller) and the slave.

l SDO (Service Data Objects)
This type of message is used for acyclic communication between master and
slave, e.g. during the initialization phase of the application or in a very simple
application where no cyclic data exchange is required.

l PDO (Process Data Objects)
This type of message is exchanged cyclically/automatically between master and
slave to transfer process data. Process data is all the data required by the master
or slave to execute the application. In our example, this process data contains
e.g. position setpoint/actual values, control and status words and other important
information to be able to use the servo drive as a SoftMotion axis.

There are further message types, such as Emergency Messages, Heartbeat Messages
or Node Guarding Messages, which are also exchanged between master and slave, but
only in case of a special event or in special applications. For example, an Emergency
Message is sent from the slave to the master when a serious error has occurred in the
servo drive. A detailed description of these message types can be found in section 6
Detailed description of the CANopen protocol on page 160.

EtherCAT and CANopen manual Page 12 of 191

2 Quick-start guide

2.1.2 Wiring and pin assignment
The CAN interface is integrated in the BL 4000-C servo drives and therefore always
available. For servo drives of the BL 4000-M / BL 4000-D series, the CAN interface is
only available with the CAN field bus variant. More detailed information on this can be
found in the Product Description section of the Product manual BL 4000-D and
BL 4000-M.

 CAN bus wiring
When wiring the servo drive via the CAN bus, it is essential that you observe the
following information and notes in order to obtain a stable, trouble-free system.

If the cabling is not correct, faults can occur on the CAN bus during operation, which
can cause the servo drive to switch off with a fault for safety reasons.

 120Ω terminating resistor
No terminating resistor is integrated in the BL 4000-C, BL 4000-D and BL 4000-M
servo drives.

BL 4000-C
The CAN bus connection is designed as a 9-pin DSUB connector (servo drive side)
according to the standard.

Figure 1: CAN connector

Pin Name Description

1 Not used

6 CAN-GND CAN-GND
(directly coupled to GND in the BL 4000-C servo
drive)

2 CAN-L CAN low signal line

7 CAN-H CAN high signal line

3 CAN-GND See pin no. 6

8 Not used

4 Not used

9 Not used

5 Shield Connection for cable shield

EtherCAT and CANopen manual Page 13 of 191

2 Quick-start guide

BL 4000-D and BL 4000-M (Fieldbus variant CAN)
On these devices, the CAN bus connection is designed as an M8 connector according to
IEC 61076-114 (4-pin, socket, D-coded). Note that although the fieldbus variant
PROFINET/EtherCAT uses the identical connectors, it is not electrically compatible. The
fieldbus variants must not be mixed up and must never be used simultaneously in the
same network!

Figure 2: Pin assignment of the fieldbus connector

Pin assignment CANopen:
Pin Name Description Colour

1 CAN-H Differential Signal High Yellow

2 CAN-GND Reference potential Orange

3 CAN-L Differential Signal High White

4 CAN-GND Reference potential Blue

For wiring, we recommend using the following pre-assembled cables or comparable
products from other manufacturers:
Assembled network cable Phoenix Contact:
M8 plug to M8 plug: NBC-M8MSD/ 1,0-93C/M8MSD - 1423707
M8 plug to RJ45: NBC-M8MSD/ 1,0-93C/R4AC - 1423711
M8 plug to free cable end: NBC-M8MSD/ 1,0-93C - 1423703

2.1.3 Wiring instructions
For trouble-free operation of the CAN bus communication, the following instructions
must be observed

l Ideally, the individual nodes of the networks are always connected in a linear
manner so that the CAN cable is looped through from servo drive to servo drive.

l A terminating resistor of 120 Ω, 5%, must be present on both ends of the CAN
bus cable

l We advise against the use of intermediate plugs for cabling the CAN bus.
However, if this is necessary, use metal connector housings for connecting the
cable shield.

In order to keep interferences as low as possible ensure that

l the motor cables are not installed parallel to signal lines
l the motor cables comply with the specification
l the motor cables are properly shielded and earthed (grounded)

The cable used should be constructed as follows

EtherCAT and CANopen manual Page 14 of 191

2 Quick-start guide

l Shielded cables with exactly two twisted pairs must be used for cabling
l Use one twisted pair to connect CAN-H and CAN-L.
l The cores of the other pair are used jointly for CAN-GND.
l The shield of the cable is led to the CAN shield connections for all nodes

Figure 3: CAN bus cabling example

Technical data CAN cable
The cable names that are stated refer to cables made by Lapp. However, it is also
possible to use comparable cables from other manufacturers, for example Lütze or
Helukabel.
Technical data of the CAN bus cable: 2 pairs of 2 twisted cores, d ≥ 0.22 mm2,
shielded, loop resistance < 0.2 Ω/m, characteristic impedance 100-120 Ω

LAPP KABEL UNITRONIC BUS CAN; 2 x 2 x 0.22; 7.6 mm, with CU shielding
For highly flexible applications:
LAPP KABEL UNITRONIC BUS CAN FD P; 2 x 2 x 0.25; 8.4 mm, with CU shielding

2.1.4 Status LEDs

BL 4000-C
For easy indication of the CAN bus status, the servo drive is equipped with two fieldbus
status LEDs:
The LEDs indicate the following states:

Name Colour Description

RUN/SF/MS Green This LED indicates ongoing communication between the
master and the servo drive. It is triggered when a message is
received from the master. If this LED is continuously OFF,
there is no communication with the servo drive.

ERR/BF/NS Red This LED indicates the fieldbus error related to the CAN
fieldbus. The LED flashes if a CAN-related fieldbus error is
present and has not yet been acknowledged.

In normal operation the RUN LED is on, because communication with the servo drive is
taking place and the ERR LED is off.
If the ERR LED is flashing, one of the following CAN fieldbus errors has occurred:

EtherCAT and CANopen manual Page 15 of 191

2 Quick-start guide

Group 12: CAN communication

12-1 CAN: communication
error, bus OFF

Check the wiring: compliance with the cable
specification, cable break, maximum cable length
exceeded, correct terminating resistors, cable shield
earthed, all signals connected?

12-2 CAN: communication
error (sending)

12-3 CAN: communication
error (receiving)

12-4 CAN: Node Guarding Failure of the PLC or the cycle time of the remote
frames of the servo drive and PLC do not match.

12-5 CAN: RPDO too short The number of bytes of a received RPDO is smaller
than the number that is parameterised in the servo
drive.

12-9 CAN: protocol error Please contact the Technical Support team.

2.1.5 Activate CANopen
The CANopen fieldbus communication must be activated once via the CANopen
window of the MPC ServoCommander (Parameter / Fieldbus / CANopen / Operation
parameters). Depending on the devices series, not all options may be available, so that
the appearance of the window may be different.

A total of 3 different parameters must be set:

Parameter Description

Bit rate This parameter determines the bit rate in kBit/s used on the
CAN bus. It must match the bit rate in the master. Note that the
maximum permissible cable length decreases at high bit rates.

EtherCAT and CANopen manual Page 16 of 191

2 Quick-start guide

Parameter Description

Node number For clear identification in the network, each participant must be
assigned a node number that may only occur once in the
network. The device is addressed via this node number.
As an additional option it is possible to make the node number
of the servo drive dependent on the external connection. The
input combination of the digital inputs DIN0...DIN3 is added
once to the basic node number after the reset.

Options Add node number to COB-IDs of the PDOs:
By setting this option, the COB-IDs of the PDOs do not have to
be adapted manually to the node number (see section 6.3.2
Objects for PDO configuration on page 168).

Finally, the CANopen protocol can be activated. The above mentioned parameters can
only be changed if the protocol is deactivated.

 Parametrisation of the CANopen functionality
Please note that the parametrisation of the CANopen functionality is only retained after
a reset if the parameter set of the servo drive has been saved.

 Identical node numbers
It is not permitted to operate several servo drives on the CANopen fieldbus with the
same node number. Therefore, make sure that each servo drive on the CANopen
fieldbus has a unique node number before you activate communication.

EtherCAT and CANopen manual Page 17 of 191

2 Quick-start guide

2.1.6 Integration of the servo drive in a master project
As an example, this chapter shows how to integrate the servo drive into a CoDeSys V3.5
project and operate them as SoftMotion drives.
As a prerequisite, you must download the CANopen EDS file (Electronic Data Sheet) for
the corresponding servo drive from our website (https://www.motorpowerco.com). This
file contains a complete description of the drive characteristics and the object dictionary
and is used by CoDeSys (or another CANopen master) for the automatic configuration
of the servo drive. The following example shows the installation of a BL 4104-C.

Create a new project
Start CoDeSys, connect to your CANopen master and create an empty project.

Install the EDS file in the CoDeSys device directory
l Open the CoDeSys device directory.
Path: Tools / Device Repository

l Click the Install button
l Select the downloaded EDS file from your location.
l Confirm by clicking the Open button

Now the CoDeSys software knows the servo drive and it can be used.

EtherCAT and CANopen manual Page 18 of 191

2 Quick-start guide

Add CANopen Master
Next, a CANopen master must be added. Therefore right click on the Master device and
select Add Device.The CANMaster must be configured to the same bit rate as the one
selected for the servo drive via the MPC ServoCommander.

To be able to connect the servo drive to the CANmaster, an additional CANopen
SoftMotion Manager must be added to the CANmaster.
To do this, right click on the CANmaster again and select Add Device.

EtherCAT and CANopen manual Page 19 of 191

2 Quick-start guide

Set cycle period
The SoftMotion Manager runs with a specific cycle time. As cyclic PDO data exchange is
used in our application, the master synchronises the servo drive to this cycle time. To do
this, the cycle time of the master (Cycle Period) must match the cycle time configured in
the servo drive.
In the MPC ServoCommander you will find the dialog for configuring the cycle time in the
menu Parameters\Controller parameters\Cycle times. For more information on setting
the cycle times, refer to the section Control circuit cycle times in the product manual
BL 4000.

Adding devices to the project
Finally, the generation of synchronisation telegrams must be activated in the SoftMotion
Manager (Enable Sync Producing). Log on to the master by clicking on the Online
Config Mode button. Search for servo drives on the CANopen field bus by right-clicking
on the CANopen SoftMotion Manager and selecting Scan devices.

All servo drives connected to the fieldbus are detected and can be added to the project
by clicking the Copy to project button. Afterwards the selected servo drives are
displayed as devices connected to SoftMotion Manager.

EtherCAT and CANopen manual Page 20 of 191

../../../../../Content/MTX-Haupt-Inhalt/Zykluszeiten_Regelkreise.htm
../../../../../Content/MTX-Haupt-Inhalt/Zykluszeiten_Regelkreise.htm

2 Quick-start guide

Set PDO configuration
After the servo drive has been found, the cyclic data to be exchanged between servo
drive and master must be specified. This is called PDO configuration and can be found
on the tab with the corresponding servo drive name (in this case BL 4104-C).

The standard PDOmapping only uses the PDOs 1400h (TPDO0-Master►Slave) and
1800h (RPDO0-Master◄Slave).
These PDOs contain the following parameters for operating the servo drive as a
SoftMotion axis:

Name ID Description See

controlword 6040h Control word for activating /
deactivating the servo drive

page 102

modes_of_operation 6060h Configuration of the operating mode
of the drive

page 122

homing_method 6098h Configuring the homing method to be
used

page 124

target_position 607Ah Position setpoints page 147

TPDO 0

Name ID Description See

statusword 6041h Current status of the drive page 102

modes_of_operation_
display

6061h Current operation mode of the drive page 122

error_register 1001h Current error code of the drive page 174

position_actual_value 6064h Actual position value page 66

RPDO 0

Both PDOs must be set to "Cyclic transmission at 1 Sync". This is done by selecting the
corresponding PDO and clicking the Edit button.

EtherCAT and CANopen manual Page 21 of 191

2 Quick-start guide

Once the PDO configuration is complete, a SoftMotion axis can be added to the servo
drive.
To do this, select the servo drive in SoftMotion Manager. A context menu opens by right-
clicking on the list entry (BL _4104_C). Click on the menu item Add SoftMotion CiA402
Axis.

Adjust conversion factors
To ensure that the units of the cyclically exchanged values (e.g. for position and speed)
match between master and servo drive, the scaling in the servo drive must be adapted
to the scaling in the master. Therefore the following scaling should be set in the MPC
ServoCommander under Parameters/Field bus/CANopen/Display units:

With this scaling a maximum of +-32768 revolutions with 16 bit resolution can be
displayed on the bus. If this is not sufficient, the scaling of the setpoints transmitted on
the bus can be adapted. This is described in section 3.3 Factor Group on page 43.
If the scaling is configured correctly, the actual position values should now be displayed
in the Commissioning window of the CoDeSys SoftMotion axis:

The axis can now be moved from the Commissioning tab for testing. In addition, the axis
is now ready for implementation in the PLC project. A detailed description of all

EtherCAT and CANopen manual Page 22 of 191

2 Quick-start guide

parameters of the servo drive and the implemented operating modes can be found in
section 3 Parameterisation on page 36.

EtherCAT and CANopen manual Page 23 of 191

2 Quick-start guide

2.2 EtherCAT
EtherCAT is a real-time Ethernet developed by Beckhoff Automation. The CAN
application protocol over EtherCAT (CoE) has been defined to enable an easy
changeover from CAN to EtherCAT. This allows the CiA 402 drive controller profile to be
used via EtherCAT.

2.2.1 Basics
CoE is based on the CANopen field bus protocol and therefore uses the same object
dictionary and the same message types:

l SDO (Service Data Objects)This type of message is used for acyclic
communication between master and slave, e.g. during the initialization phase of
the application or in a very simple application where no cyclic data exchange is
required.

l PDO (Process Data Objects)
This type of message is exchanged cyclically/automatically between master and
slave to exchange process data. Process data is all the data required by the
master or slave to execute the application. In our example, this process data
contains e.g. position setpoint/actual values, control and status words and other
important information to be able to use the servo drive as a SoftMotion axis.

The message type Emergency Message is also available. This message is sent from the
slave to the master if a serious error has occurred in the servo drive.
Other message types, such as Sync messages, are not supported by EtherCAT CoE,
because there are other mechanisms to synchronise several slaves on the fieldbus to a
common clock. The most important one is Distributed Clocks (DC), which are fully
supported by the BL 4000 devices series.
Synchronisation is important for motion applications in which several drives execute
interpolated movements.

EtherCAT and CANopen manual Page 24 of 191

2 Quick-start guide

2.2.2 Wiring and pin assignment
In the BL 4000-C servo drives the EtherCAT interface is already integrated in the servo
drives. For servo drives of the BL 4000-M / BL 4000-D series, the EtherCAT interface is
only available with the PROFINET/EtherCAT field bus variant. For more detailed
information, see the Product Description section of the Product manual BL 4000-D and
BL 4000-M.

BL 4000-C
According to the EtherCAT specification, two RJ45 connectors are available as RTE0
and RTE1 [X21]. One for uplink (connection from the previous drive) and one as
downlink (connection to the next servo drive in the line).

The two connections RTE0 and RTE1 are RJ45 sockets, Cat. 6

Pin Designation Description

1 RX- Receiver signal -

2 RX+ Receiver signal +

3 TX- Transmitter signal -

4 - -

5 - -

6 TX+ Transmitter signal +

7 - -

8 - -

BL 4000-D and BL 4000-M (Fieldbus variant PROFINET/EtherCAT)
On these devices, the EtherCAT connection is designed as an M8 connector according
to IEC 61076-114 (4-pin, socket, D-coded). Note that although the fieldbus variant CAN
uses the identical connectors, it is not electrically compatible. The fieldbus variants must
not be mixed up and must never be used simultaneously in the same network!

EtherCAT and CANopen manual Page 25 of 191

2 Quick-start guide

Figure 4: Pin assignment of the fieldbus connector

Pin assignment EtherCAT/PROFINET:
Pin Name Description Colour

1 TD+ Transmission signal + Yellow

2 RD+ Reception signal + White

3 TD- Transmission signal - Orange

4 RD- Reception signal - Blue

We recommend using the following pre-assembled cables or comparable products from
other manufacturers.
Assembled network cable Phoenix Contact:
M8 plug to M8 plug: NBC-M8MSD/ 1,0-93C/M8MSD - 1423707
M8 plug to RJ45: NBC-M8MSD/ 1,0-93C/R4AC - 1423711
M8 plug to free cable end: NBC-M8MSD/ 1,0-93C - 1423703

2.2.3 Wiring instructions
For cabling, shielded twisted pair Ethernet cables that comply with STP, Cat.5 are used
for the EtherCAT bus. All nodes of a network are connected in a linear manner.

EtherCAT and CANopen manual Page 26 of 191

2 Quick-start guide

2.2.4 Status LEDs (BL 4000-C)
For easy indication of the EtherCAT bus status, the servo drive series BL 4000-C is
equipped with two fieldbus status LEDs. The behaviour of the LEDs is predefined by the
EtherCAT User Group (ETG).
The green RUN LED indicates the current EtherCAT® CoE state:

Flashing code Status of the State Machine

LED is off No communication yet.

LED flashes Pre-Operational (PreOp)
The master sets up the slave for cyclic communication. Only
asynchronous communication via SDOs is active.

LED flashes once Safe Operation (SafeOp)
Cyclic communication via PDOs is running. The slave
ignores the setpoint data, but sends actual values to the
master.

LED is on Operational (OP)
The slave accepts setpoints from the master and follows
them.

The red ERR-LED indicates possible fieldbus errors:

Flashing code Status of the State machine

LED is off No error

LED flashes twice Cyclic process data watchdog error
The fieldbus communication is interrupted. The slave has not
received setpoints from the master.

2.2.5 Activate EtherCAT
The EtherCAT fieldbus communication must be activated once via the EtherCAT
window of the MPC ServoCommander (Parameters / Field bus / EtherCAT / Operating
parameters).

 Servo drive blocks communication to succeeding slaves
Note that a servo drive with a deactivated Ethercat interface blocks communication to
all following slaves on the fieldbus. Therefore a deactivated servo drive should be
removed from the network.

EtherCAT and CANopen manual Page 27 of 191

2 Quick-start guide

2.2.6 Integration of the servo drive in a master project
As an example, the servo drive BL 4104-C is to be inserted as a SoftMotion axis in a
PLC project based on CoDeSys V3.5 and Beckhoff TwinCAT. The integration of other
servo drives is done in the same way.

Integration into the CoDeSys V3.5 project
As a prerequisite you must download the EtherCAT ESI file for the corresponding servo
drive from our website (https://www.motorpowerco.com). This file contains a complete
description of the drive features and the object dictionary and is used by CoDeSys (or
any other EtherCAT master) to automatically configure the servo drive.
In contrast to the CANopen EDS file, this file contains not only the object dictionary, but
also the complete configuration of the servo drive, including the selection of cyclically
exchanged setpoints and actual values via PDOs, the configuration of the fieldbus cycle
time and all necessary initialization commands to be sent to the servo drive when the
fieldbus is started up.

l After downloading the ESI XML file, connect the servo drive to the CoDeSys
master via an Ethernet cable.

l Start CoDeSys, connect to your EtherCAT master and create an empty project.

Install the ESI XML file in the CoDeSys device directory
l Call up the CoDeSys device directory. Path: Tools / Device Repository
l Click the Install button.
l Select the downloaded EDS file from your location.
l Confirm by clicking the Open button.

EtherCAT and CANopen manual Page 28 of 191

2 Quick-start guide

Now the CoDeSys software knows the servo drive BL 4000-C and it can be used.

Add EtherCAT Master
Next an EtherCAT Master must be added. To do this, right click on the Master device
and select Add Device.

EtherCAT and CANopen manual Page 29 of 191

2 Quick-start guide

Set cycle time
The EtherCAT master exchanges PDOs with the servo drive at a certain cycle time. For
this purpose, the servo drive is synchronised by the master to this cycle time. The Cycle
Time of the servo drive must therefore correspond to the cycle time configured in the
EtherCAT master, and Distributed Clock (DC) must be activated in the master.
In the MPC ServoCommander you will find the dialog for configuring the cycle time in the
menu Parameters\Controller parameters\Cycle times. For more information on setting
the cycle times, refer to the section Control circuit cycle times in the product manual
BL 4000.

Adding devices to the project
Finally, the generation of synchronisation telegrams must be activated in the SoftMotion
Manager (Enable Sync Producing). Log on to the master by clicking on the Online
Config Mode button. Search for servo drives on the CANopen field bus by right-clicking
on the EtherCAT SoftMotion Manager and selecting Scan devices.

All servo drives connected to the fieldbus are detected and can be added to the project
by clicking the Copy to project button. Afterwards the selected servo drives are
displayed as devices connected to SoftMotion Manager.

EtherCAT and CANopen manual Page 30 of 191

../../../../../Content/MTX-Haupt-Inhalt/Zykluszeiten_Regelkreise.htm
../../../../../Content/MTX-Haupt-Inhalt/Zykluszeiten_Regelkreise.htm

2 Quick-start guide

Set PDO configuration
In contrast to CANopen, the complete PDO configuration of the cyclic data is done
automatically via the ESI XML file, so that a SoftMotion axis can now be added directly
to the servo drive.
Right click on the BL 4104-C to add a DSP402-compatible SoftMotion axis:

Adjust conversion factors
To ensure that the units of the cyclically exchanged values (e.g. for position and speed)
match between master and servo drive, the scaling in the servo drive must be adapted
to the scaling in the master. Therefore the following scaling should be set in the MPC
ServoCommander under Parameters/Field bus/CANopen/Display units:

With this scaling a maximum of +-32768 revolutions with 16 bit resolution can be
displayed on the bus. If this is not sufficient, the scaling of the setpoints transmitted on
the bus can be adapted. This is described in section 3.3 Factor Group on page 43.
If the scaling is configured correctly, the actual position values should now be displayed
in the Commissioning window of the CoDeSys SoftMotion axis:

EtherCAT and CANopen manual Page 31 of 191

2 Quick-start guide

The axis can now be moved from the Commissioning tab for testing. In addition, the axis
is now ready for implementation in the PLC project. A detailed description of all
parameters of the servo drive and the implemented operating modes can be found from
section 3 Parameterisation on page 36.

2.2.7 EoE (Ethernet over EtherCAT®)
Servo drives of the BL 4000 series support the EoE profile (Ethernet over EtherCAT®).
In this case, normal Ethernet packets are also routed by the Ethernet master via the
EtherCAT® network. This enables the MPC ServoCommander to establish Ethernet
communication with the servo drives in the EtherCAT® network without additional
cabling of the LAN interfaces.
EoE does not have to be activated separately in the servo drive, but only configured in
the EtherCAT®master.
There are two different connection options for the EoE profile. In the first case, the
laptop/PC running the MPC ServoCommander is connected directly to the controller, in
the second case both are operated on a common LAN.

EtherCAT and CANopen manual Page 32 of 191

2 Quick-start guide

2.2.7.1 Activating EoE in the master
The activation of the EoE function is explained below using the example of a Beckhoff
controller. The example assumes that an EtherCAT® network already exists and that
cyclic communication with the drives is possible.
Select Device 1 (EtherCAT®) in the TwinCAT SystemManager and click on Advanced
Settings in the EtherCAT tab

Select the entry EoE Support and activate Virtual Ethernet Switch and Connect to
TCP/IP Stack. In the Windows IP Routing section, the IP Enable Router field must be
selected. This enables the forwarding of standard Ethernet packets in the controller.

Finally, EoE support must be activated in the servo drive for each servo drive.

EtherCAT and CANopen manual Page 33 of 191

2 Quick-start guide

Select the corresponding drive, in this example Drive 5 (BL 4104) and click on Advanced
Settings in the EtherCAT tab.

Click Mailbox / EoE, enable Virtual Ethernet Port and select IP Port. At this point you
have the choice whether you want to assign a fixed IP address to the device or whether
it should be obtained dynamically via DHCP. This requires that a corresponding DHCP
server is located in the network.

Finally, the new configuration must be loaded and activated on the controller. The servo
drive is now displayed in the device search of the MPC ServoCommander as if the servo
drive is connected directly via the Ethernet parameterisation interface (X18). If this is not
the case, a "bridge" must also be activated within the Beckhoff controller. This is
described in the following chapter.

2.2.7.2 Configure Bridge
To make this setting, you must log in directly to the operating system of the Beckhoff
controller.
Select Network and Internet in the Control Panel. Select the appropriate Ethernet
connections (in our case TwinCAT Intel PCI Ethernet Adapter and Beckhoff Virtual
Ethernet Adapter).

EtherCAT and CANopen manual Page 34 of 191

2 Quick-start guide

Press the right mouse button and select Bridge Connections.

Afterwards a Network Bridge is displayed.

EtherCAT and CANopen manual Page 35 of 191

3 Parameterisation

3 Parameterisation
Before the servo drive can perform the desired task (torque control, speed control,
positioning), numerous parameters of the servo drive must be adapted to the motor
used and the specific application. This can be done either via the MPC
ServoCommander or via CANopen.
The order in which the parameters are set can be based on the order of the following
chapters. If the servo drive is already fully parameterised, you can continue directly with
section 4 Device Control on page 102 or section 5Operating modes on page 122.

 Seven-segment display of the servocontroller shows an "A"
Servo drives with a seven-segment display show an "A" (Attention) if the servo drive
has not yet been parameterised. If the servo drive is to be parameterised completely
via CANopen, you must write to object 6510h_C0h to suppress this display. (See
section 3.17.1.16Object 6510h_C0h: commissioning_state on page 99).

In addition to the parameters described here in detail, the object directory of the servo
drive contains further parameters that must be implemented according to CANopen.
They usually do not contain any information that can be used meaningfully with our
servo drives. If required, the specification of such objects can be found in the
corresponding standards (see section 7.1 CANopen on page 185).

Description of the parameters
All parameters of the drive are described in a uniform way. If the parameter is a simple
data type (VAR), it is described as follows:

Index Index (hexadecimal)
Name Name of the parameter
Info Unit rw PDO Data type

Value Value range Default value

If the parameter is a structured data type (ARRAY/RECORD), it is described as follows:

Index Index (hexadecimal)
Name Name of the parameter group
Type Object code Max

Sub-Index Subindex (hexadecimal)
Name Name of the parameter
Info Unit rw Data type

Value Value range Default value

EtherCAT and CANopen manual Page 36 of 191

3 Parameterisation

The individual fields have the following meaning:

Field Meaning

Index (hexadecimal) The main index of the described parameter.

Subindex (hexadecimal) The subindex of the described parameter. If this is not
specified, the subindex is zero.

Name of the parameter
group

Plain text name of the parameter group.

Name of the parameter Plain text name of the parameter.

Object code Specifies whether the data type is simple or structured:

l VAR: Simple data type
l ARRAY: Group of parameters that all have the
same data type.

l RECORD: Group of parameters that have
different data types.

Max Maximum subindex of the group.

Data type Data type of the parameter or the ARRAY:
A list of the supported data types can be found in section
6.2 Access via SDO on page 161.

Unit Physical unit of the parameter.

Access Specifies whether the parameter may be read (ro),
written (wr) or read and written (rw).

PDO Specifies whether the parameter may be mapped into a
PDO.

Value range The range of permissible values for this parameter.

Default value Value that is effective on factory setting or after
successful writing to 3.1.2.1 Object 1011h: restore_
default_parameters.

EtherCAT and CANopen manual Page 37 of 191

3 Parameterisation

3.1 Loading and saving parameter sets

3.1.1 Overview
The servo drive has three parameter sets:
Current parameter set
This parameter set is located in the servo drive's volatile memory (RAM) and contains
the parameters that are currently in use. It can be read and written as required with the
parameterization programMPC ServoCommander or via the CAN bus. When the servo
drive is switched on, the Application parameter set is copied to the Current
parameter set.
Application parameter set
The Current parameter set can be saved in the non-volatile flash memory (EEPROM)
so that it is available again after the next power-up. The saving process is triggered with
a write access to the CANopen object 1010h_01h (save_all_parameters).

Default parameter set
This is the unchangeable parameter set of the servo drive specified by the manufacturer
as standard. The Default parameter set can be copied to the Current parameter set
by a write operation to the CANopen object 1011h_01h (restore_all_default_
parameters). This copying process is only possible when the power stage is switched
off.

The following diagram illustrates the relationships between the individual parameter
sets.

Two different concepts for parameter set management are conceivable:
Concept 1: The parameter set is created with the MPC ServoCommander and also
transferred completely to the individual servo drives with the MPC ServoCommander.
Using this method, only the objects that are exclusively accessible via CANopen must
be set via the CAN bus. The disadvantage here is that the parameterization software is
required for each commissioning of a new machine or in the event of a repair (servo
drive replacement).
Concept 2: This variant is based on the fact that most application-specific parameter
sets differ from the default parameter set only in a few parameters. This makes it
possible to rebuild the Current parameter set each time the system is switched on via
the CAN bus. For this purpose, the master controller first loads the Default parameter
set by calling the CANopen object 1011h_01h (restore_all_default_parameters). Then
only the deviating objects are transferred, which is very fast due to the small number of
objects. An advantage is that this procedure also works with unparameterised servo

EtherCAT and CANopen manual Page 38 of 191

3 Parameterisation

drives, so that commissioning new systems or replacing individual servo drives is
unproblematic and the parameterization software MPC ServoCommander is not
required for this purpose.

 Risk of injury due to incorrectly parameterised servo drive
An incorrectly parameterised servo drive can cause uncontrolled rotary movements
and thus personal injury or damage to property.

Before switching on the power stage for the very first time, make sure that the servo
drive contains the desired parameters.

3.1.2 Description of objects

3.1.2.1 Object 1011h: restore_default_parameters
Index 1011h
Name restore_parameters
Type ARRAY 01h

Sub-Index 01h
Name restore_all_default_parameters
Info -- rw UINT32

Value 64616F6Ch („load“),
1 (read access) --

The object 1011h_01h (restore_all_default_parameters) allows the Current parameter
set to be set to a defined state. To do this, the Default parameter set is copied into the
Current parameter set. The copying process is triggered when "load" is written in
hexadecimal form to this object.
This command is only executed when the output stage is deactivated. Otherwise the
SDO error 08 00 00 22h is issued. If the wrong identifier is sent, error 08 00 00 20h is
issued. If the object is accessed in read mode, a 1 is returned to indicate that resetting to
default values is supported.

EtherCAT and CANopen manual Page 39 of 191

3 Parameterisation

3.1.2.2 Object 1010h: store_parameters
Index 1010h
Name store_parameters
Type ARRAY 01h

Sub-Index 01h
Name save_all_parameters
Info -- rw UINT32

Value 65766173h („save“),
1 (read access) --

If the Default parameter set is also to be saved as the Application parameter set,
1010h_01h (save_all_parameters must be called in addition.
If the object is written via an SDO, the default behavior is that the SDO is answered
immediately. The response therefore does not reflect the end of the saving process.
However, the behavior can be changed using object 6510h_F0h (compatibility_control).

EtherCAT and CANopen manual Page 40 of 191

3 Parameterisation

3.2 Compatibility settings

3.2.1 Overview
The object compatibility_control has been introduced in order to remain compatible with
earlier device series on the one hand, and to be able to carry out changes and
corrections compared to the DSP402 and DS301 on the other. In the default parameter
set, this object returns 0, that is, compatibility with earlier versions. For new applications,
we recommend that you set the defined bits to ensure the highest possible level of
compliance with the standards mentioned.

3.2.2 Description of objects

3.2.2.1 Object 6510h_F0h: compatibility_control
Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index F0h
Name compatibility_control
Info -- rw UINT16

Value 0...7FFh, see Table --

Bit Name Value Description

Bit 0 homing_method_
scheme*

0001h The bit has the same meaning as bit 2 and is
present for compatibility reasons. If bit 2 is set,
this bit is also set and vice versa.

Bit 1 reserved 0002h The bit is reserved. It must not be set.

Bit 2 homing_method_
scheme

0004h If this bit is set, the homing methods 32... 35
are numbered according to DSP402,
otherwise the numbering is compatible with
earlier implementations (see also section
5.2.3 Homing sequences on page 128). If this
bit is set, bit 0 is also set and vice versa.

Bit 3 reserved 0008h The bit is reserved. It must not be set.

Bit 4 response_after_
save

0010h If this bit is set, the response to save_all_
parameters is not sent until saving is
complete. This can take several seconds,
which may cause a timeout in the PLC. If the
bit is cleared, the response is sent
immediately, but it must be taken into account
that the saving process is not yet complete.

Bit 5 reserved 0020h The bit is reserved. It must not be set.

EtherCAT and CANopen manual Page 41 of 191

3 Parameterisation

Bit Name Value Description

Bit 6 homing_to_zero 0040h When using CANopen, the homing run
consists of only 2 phases (search run and
crawl run). The drive does NOTmove to the
determined zero position (which may be
shifted to the found reference position, e.g. by
the homing_offset).
If this bit is set, the option selected in the MPC
ServoCommander under Go to zero position
after homing is used. In addition, the value
given under max. homing distance permitted
is used for the maximum search distance of
the reference run.
See section 5.2 Homing Mode on page 124.

Bit 7 device_control 0080h If this bit is set, bit 4 of the statusword
(voltage_enabled) is output according to
DSP 402 v2.0. In addition, the FAULT_
REACTION_ ACTIVE state can be
distinguished from the FAULT state. See
section 4 Device Control on page 102.

Bit 8 reserved 0100h The bit is reserved. It must not be set.

Bit 9 uzk_preload_ready 0200h If this bit is set, a set bit 4 (voltage_enabled)
in the statuswordindicates that the DC link is
fully loaded. If this bit is cleared, bit 4 indicates
that the output stage is switched on. See
section 4 Device Control on page 102.

Bit 10 home_offset_sign 0400h If this bit is set, the home_offset(607Ch) is
subtracted from the reference position instead
of added, so that the drive is at the home_
offset position (instead of -home_offset) after
the reference run.

EtherCAT and CANopen manual Page 42 of 191

3 Parameterisation

3.3 Factor Group

3.3.1 Overview
Usually, the values transmitted via the CAN bus are converted by the controller in such a
way that they match the application used. If this is not the case, the scaling of the values
transmitted on the bus can be adjusted directly using the Factor Group.
This may also be necessary if the resolution of the values transmitted on the bus is not
sufficient, e.g. because the standard settings only allow a differentiation of +-32768
revolutions.
The servo drive converts the read or written values into its internal units with the help of
the Factor Group. For each physical quantity (position, velocity and acceleration) a
conversion factor is available to adapt the user units to the own application. The units set
by the Factor Group are generally referred to as position_unit, speed_unit or
acceleration_unit. The following figure illustrates the function of the Factor Group:

All parameters in the servo drive are always stored in internal units and are only
converted by means of the Factor Group when writing or reading.
For this reason, the Factor Group should be set before the very first
parameterisation and should not be changed afterwards.

EtherCAT and CANopen manual Page 43 of 191

3 Parameterisation

By default, the Factor Group is set to the following units:

Quantity Designation Unit Description

Length position_unit Increments 65536 increments per
revolution

Speed speed_unit min-1 Revolution per minute

Acceleration acceleration_unit (min-1)/s Speed increase in revolutions
per minute per second

3.3.2 Parameterisation of the Factor Group
The Factor Group can be conveniently set via the MPC ServoCommander:
Parameters/Field bus/CANopen/Display units or
Parameters/Feld bus/Ethercat/Display units

Figure 5: "CANopen Factor Group" window

Under Settings/Physical Units the desired unit for the position values (Position), Speed
and Acceleration can be selected separately. In addition, the desired number of decimal
places (Decimals) and a gear (Gearbox) can be included.
If a length unit is selected as the position unit, the Feed constant can also be specified.
The results of the setting selected in this way are displayed under Calculated Factor
Group and can be transferred to the servo drive by clicking the Apply Factor Group
button.

EtherCAT and CANopen manual Page 44 of 191

3 Parameterisation

3.3.3 Description of objects

3.3.3.1 Object 6093h: position_factor
The object position_factor is used to convert all length units of the application from
position_unit to the internal unit increments (65536 increments correspond to 1
revolution). It consists of numerator and denominator. The position_factor must not be
greater than 224.

Index 6093h
Name position_factor
Type ARRAY 02h

Sub-Index 01h
Name numerator
Info -- rw PDO UINT32

Value -- 1

Sub-Index 02h
Name divisor
Info -- rw PDO UINT32

Value -- 1

3.3.3.2 Object 6094h: velocity_encoder_factor
The object velocity_encoder_factor is used to convert all velocity values of the
application from speed_unit to the internal unit revolutions per 4096 minutes. It
consists of numerator and denominator.

Index 6094h
Name velocity_encoder_factor
Type ARRAY 02h

Sub-Index 01h
Name numerator
Info -- rw PDO UINT32

Value -- 1000h

Sub-Index 02h
Name divisor
Info -- rw PDO UINT32

Value -- 1

EtherCAT and CANopen manual Page 45 of 191

3 Parameterisation

3.3.3.3 Object 6097h: acceleration_factor
The object acceleration_factor is used to convert all acceleration values of the
application from acceleration_unit to the internal unit revolutions per minute per 256
seconds. It consists of numerator and denominator.
Index 6097h
Name acceleration_factor
Type ARRAY 02h

Sub-Index 01h
Name numerator
Info -- rw PDO UINT32

Value -- 100h

Sub-Index 02h
Name divisor
Info -- rw PDO UINT32

Value -- 1

3.3.3.4 Object 607Eh: polarity
The sign of the position and velocity values of the servo drive can be set with the polarity
object. This can be used to invert the direction of rotation of the motor with identical
setpoints.
In most applications it is useful to set the position_polarity_flag and the velocity_
polarity_flag to the same value.
Setting the position_polarity_flag or the velocity_polarity_flag only affects parameters
during reading and writing. Parameters already present in the servo drive are not
changed.

Index 607Eh
Name polarity
Info -- rw PDO UINT8

Value 0, 40h, 80h, C0h --

Bit Value Name Description

6 40h velocity_polarity_
flag

0:multiply by 1 (default)
1:multiply by –1 (invers)

7 80h position_polarity_
flag

0:multiply by 1 (default)
1:multiply by –1 (invers)

EtherCAT and CANopen manual Page 46 of 191

3 Parameterisation

3.4 Power stage parameters

3.4.1 Overview
The DC link is supplied with mains voltage via a pre-charging circuit. This limits the
current and controls the charging process. The precharge control is bypassed when the
DC link is fully charged. This state is a condition for enabling the servo drive. The
rectified mains voltage is smoothed with the capacitors of the DC link. The motor is
supplied from the DC link via the IGBTs.
The output stage contains a number of monitoring functions, some of which can be
parameterised:

l Controller enable logic (software- and hardware enable)
l Overvoltage / undervoltage monitoring of the DC link
l Overcurrent monitoring
l Power section monitoring

3.4.2 Description of objects

3.4.2.1 Object 6510h_10h: enable_logic
To enable the power stage of the servo drive, the digital input Controller enable must be
set: The Controller enable is processed by the microcontroller of the servo drive.
Depending on the operating mode, the servo drive reacts differently after this signal is
disabled:

Positioning mode and speed-controlled operation
After resetting the signal, the motor is braked with a defined braking ramp. The output
stage is only switched off when the motor speed is below 10 min-1 and the holding
brake, if present, has been applied.

Torque-controlled operation
The output stage is switched off immediately after the signal is reset. At the same time a
possibly existing holding brake is applied. The motor coasts down unbraked or is only
stopped by a possibly existing holding brake.

 Danger to life due to electric shock!
Removing the Controller enable does not guarantee that the motor is voltage-free.

EtherCAT and CANopen manual Page 47 of 191

3 Parameterisation

When operating the servo drive via CAN or EtherCAT, the digital input Controller enable
can be connected to 24V and the enable controlled via the bus. To do this, object
6510h_10h (enable_logic) must be set to 2 (for CAN) or 8 (for EtherCAT). For safety
reasons, this is done automatically when the fieldbus is activated (even after a reset of
the servo drive).

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 10h
Name enable_logic
Info -- rw UINT16

Value 0...18h --

Value Description

0 Digital Input DIN5

1h DIN5 + Parameterisation interface

2h DIN5 + CAN

3h DIN5 + PROFIBUS/PROFINET

8h DIN5 + EtherCAT

11h Parameterisation interface only

12h CAN bus only

13h PROFIBUS/PROFINET only

18h EtherCAT only

3.4.2.2 Object 6510h_30h: pwm_frequency
The switching losses of the output stage are proportional to the switching frequency of
the power transistors. Some servo drives can draw a little more power by halving the
normal PWM frequency. However, this increases the current ripple caused by the output
stage. Switching is only possible when the output stage is switched off.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 30h
Name pwm_frequency
Info -- rw UINT16

Value 0, 1 0

Value Description

0 Standard power stage frequency

1 Half power stage frequency

EtherCAT and CANopen manual Page 48 of 191

3 Parameterisation

3.4.2.3 Object 6510h_3Ah: enable_enhanced_modulation
With the object enable_enhanced_modulation the enhanced sine modulation can be
activated. It allows for a better utilization of the DC bus voltage and thus about 14%
higher speeds. The disadvantage is that the control behavior and the smooth running of
the motor is slightly worse at very low speeds. The parameter may only be changed with
the power stage switched off and only becomes effective after a reset. To do this, the
parameter set must first be saved (save_all_parameters).

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 3Ah
Name enable_enhanced_modulation
Info -- rw UINT16

Value 0, 1 0

Value Description

0 Enhanced sine modulation OFF

1 Enhanced sine modulation ON

3.4.2.4 Object 6510h_31h: power_stage_temperature
The temperature of the power stage can be read out via the object power_stage_
temperature. If the temperature specified in object 6510h_32h (max_power_stage_
temperature) is exceeded, the power stage switches off and an error message is issued.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 31h
Name power_stage_temperature
Info °C ro PDO INT16

Value -- --

EtherCAT and CANopen manual Page 49 of 191

3 Parameterisation

3.4.2.5 Object 6510h_32h: max_power_stage_temperature
The temperature of the power stage can be read out via the object 6510h_31h (power_
stage_temperature). If the temperature specified in object max_power_stage_
temperature is exceeded, the power stage switches off and an error message is issued.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 32h
Name max_power_stage_temperature
Info °C ro INT16

Value -- --

Device type Value

BL 4102-C 85°C

BL 4104-C 85°C

BL 4304-C 90°C

BL 4308-C 85°C

BL 4312-C 75°C

3.4.2.6 Object 6510h_33h: nominal_dc_link_circuit_voltage
Via the object nominal_dc_link_circuit_voltage the device nominal voltage can be read
out in millivolts.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 33h
Name nominal_dc_link_circuit_voltage
Info mV ro UINT32

Value -- --

Device type Value

BL 4102-C 325000

BL 4104-C 325000

BL 4304-C 560000

BL 4308-C 560000

BL 4312-C 560000

EtherCAT and CANopen manual Page 50 of 191

3 Parameterisation

3.4.2.7 Object 6510h_34h: actual_dc_link_circuit_voltage
The object actual_dc_link_circuit_voltage can be used to read the current voltage of the
DC link in millivolts.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 34h
Name actual_dc_link_circuit_voltage
Info mV ro PDO UINT32

Value -- --

3.4.2.8 Object 6510h_35h: max_dc_link_circuit_voltage
The object max_dc_link_circuit_voltage specifies the DC link voltage at which the output
stage is immediately switched off for safety reasons and an error message is sent.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 35h
Name max_dc_link_circuit_voltage
Info mV ro UINT32

Value -- --

Device type Value

BL 4102-C 439979

BL 4104-C 439979

BL 4304-C 799976

BL 4308-C 799976

BL 4312-C 799976

EtherCAT and CANopen manual Page 51 of 191

3 Parameterisation

3.4.2.9 Object 6510h_36h: min_dc_link_circuit_voltage
The servo drive has an undervoltage monitor. This can be activated via object 6510h_
37h (enable_dc_link_undervoltage_error). Object 6510h_36h (min_dc_link_circuit_
voltage) specifies the minimum DC link voltage. Below this voltage, error E 02-0 is
raised.

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 36h
Name min_dc_link_circuit_voltage
Info mV rw UINT32

Value 0...1000000 --

3.4.2.10 Object 6510h_37h: enable_dc_link_undervoltage_error
The undervoltage monitoring can be activated with the object enable_dc_link_
undervoltage_error. The undervoltage monitoring can be activated with the object
enable_dc_link_undervoltage_error. Object 6510h_36h (min_dc_link_circuit_voltage)
defines the DC link voltage below which an error is raised.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 37h
Name enable_dc_link_undervoltage_error
Info -- rw UINT16

Value 0, 1 0

Value Description

0 Undervoltage error OFF (reaction Warning)

1 Undervoltage error ON (reaction Disable servo drive)

If this object is written, the error reaction of error 02-0 is modified. If 0 is written, the error
reaction Warning is set. If 1 is written, the error reaction Disable servo drive is set. If the
object is read, the reaction Disable servo drive or higher is reported as 1, all other error
reactions as 0. See also section 3.18 Error management on page 100.

EtherCAT and CANopen manual Page 52 of 191

3 Parameterisation

3.4.2.11 Object 6510h_40h: nominal_current
The nominal_current object can be used to read the nominal device current. This is the
upper limit value which can be written into the object 6075h (motor_rated_current). Due
to a power derating, different values may be read depending on the servo drive cycle
time and the power stage clock frequency.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 40h
Name nominal_current
Info mA ro UINT32

Value -- see Table

Device type Value

BL 4102-C 2000

BL 4104-C 4000

BL 4304-C 4000

BL 4308-C 8000

BL 4312-C 12000

3.4.2.12 Object 6510h_41h: peak_current
The peak_current object can be used to read the maximum device current. This is the
upper limit value which can be written into the object 6073h (max_current). Due to a
power derating, different values may be read depending on the servo drive cycle time
and the power stage clock frequency.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 41h
Name peak_current
Info mA ro UINT32

Value -- see Table

Device type Value

BL 4102-C 6400

BL 4104-C 12800

BL 4304-C 12000

BL 4308-C 24000

BL 4312-C 30000

EtherCAT and CANopen manual Page 53 of 191

3 Parameterisation

3.5 Current controller and motor adaption
 Damage to property due to incorrect settings

Incorrect settings of the current controller parameters and the current limits can
destroy the motor and possibly also the servo drive within a very short time.

3.5.1 Overview
 Danger of injury due to dangerous movements

If the phase order of the motor or angle encoder cable is twisted, positive feedback
may occur, which means that the speed in the motor cannot be controlled. The motor
can rotate uncontrolled.

The parameter set of the servo drive must be adapted for the connected motor and the
cable set used. The following parameters are affected:

l Rated current (depending on the motor)
l Overload capacity (depending on the motor)
l Number of poles (depending on the motor)
l Current controller (depending on the motor)
l Direction of rotation (depending on the motor and the phase sequence in the
motor and angle encoder cable)

l Offset angle (depending on motor and phase sequence in motor and angle
encoder cable)

These data must be determined with the programMPC ServoCommander when a motor
type is used for the first time. For a number of motors you can also obtain ready-made
parameter sets from your dealer. Please note that the direction of rotation and offset
angle also depend on the cable set used. The parameter sets therefore only work with
identical wiring.

3.5.2 Description of objects

3.5.2.1 Object 6075h: motor_rated_current
This value can be taken from the motor nameplate and is entered as an effective value
(RMS) in the unit milliampere. No current can be entered which is above the servo drive
rated current (6510h_40h, nominal_current).

Index 6075h
Name motor_rated_current
Info mA rw PDO UINT32

Value 0...nominal_current --

EtherCAT and CANopen manual Page 54 of 191

3 Parameterisation

 Objects not independent
If object 6075h (motor_rated_current) is written with a new value, object 6073h (max_
current) must also be reparameterised in any case.

3.5.2.2 Object 6073h: max_current
Servo motors may normally be overloaded for a certain period of time. This object is
used to set the maximum permissible motor current. It refers to the rated motor current
(Object 6075h, motor_rated_current) and is set in thousandths. The value range is
limited upwards by the maximum servo drive current (Object 6510h_41h, peak_current).
Many motors can be overloaded by a factor of 2 for a short time. In this case, the value
2000 must be written into this object. Object 6073h (max_current) may only be written to
after Object 6075h (motor_rated_current) has previously been written with a valid value.

Index 6073h
Name max_current
Info ‰ (1000 = motor_rated current) rw PDO UINT16

Value -- --

3.5.2.3 Object 604Dh: pole_number
The number of poles of the motor can be taken from the motor data sheet or the
parameterization programMPC ServoCommander. The number of poles is always
even. Often the number of pole pairs is given instead of the number of poles. In this
case, the number of poles is twice the number of pole pairs. This object is not changed
by restore_default_parameters, but it can be reset by selecting File / Parameter set /
Load default servo parameter set.

Index 604Dh
Name pole_number
Info -- rw PDO UINT8

Value 2...254 --

3.5.2.4 Object 6410h_11h: encoder_offset_angle
The servo motors used have permanent magnets on the rotor. These generate a
magnetic field whose orientation to the stator depends on the rotor position. For
electronic commutation, the servo drive must always adjust the electromagnetic field of
the stator at the correct angle to this permanent magnetic field. To do this, it
continuously determines the rotor position with an angle encoder (resolver etc.).
The orientation of the angle encoder to the permanent magnetic field must be entered in
the object encoder_offset_angle. This angle can be determined with the
parameterisation programMPC ServoCommander (Parameters / Device parameters /
Encoder / Settings).
The angle determined with the MPC ServoCommander is in the range of ±180°. It must
be converted as follows:
encoder_offset_angle = Offset of encoder × 32767 / 180°

EtherCAT and CANopen manual Page 55 of 191

3 Parameterisation

This object is not changed by restore_default_parameters, but it can be reset by
selecting File / Parameter set / Load default servo parameter set.

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 11h
Name encoder_offset_angle
Info 180° / 32767 rw PDO INT16

Value -- --

3.5.2.5 Object 6410h_10h: phase_order
The phase_order object considers twists between motor cable and angle encoder cable.
It can be taken from the parameterisation programMPC ServoCommander. This object
is not changed by restore_default_parameters, but it can be reset by selecting File /
Parameter set / Load default servo parameter set

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 10h
Name phase_order
Info -- rw UINT16

Value 0, 1 0

Value Description

0 Right

1 Left

EtherCAT and CANopen manual Page 56 of 191

3 Parameterisation

3.5.2.6 Object 6410h_03h: iit_time_motor
Servo motors may normally be overloaded for a certain period of time. This object is
used to specify how long the connected motor may be operated with the current
specified in object 6073h (max_current). After the I²t time has expired, the current is
automatically limited to the value specified in object 6075h (motor_rated_current) to
protect the motor. The default setting is two seconds and is applicable for most motors.

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 03h
Name iit_time_motor
Info ms rw UINT16

Value 0...10000 --

3.5.2.7 Object 6410h_04h: iit_ratio_motor
The object iit_ratio_motor can be used to read the current I²t limitation of the motor in per
mille.

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 04h
Name iit_ratio_motor
Info ‰ ro UINT16

Value -- --

3.5.2.8 Object 6510h_3Dh: iit_ratio_servo
The object iit_ratio_servo can be used to read the current I²t limitation of the power stage
in per mille.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 3Dh
Name iit_ratio_servo
Info ‰ ro PDO UINT16

Value -- --

EtherCAT and CANopen manual Page 57 of 191

3 Parameterisation

3.5.2.9 Object 6510h_38h: iit_error_enable
The object iit_error_enable defines how the servo drive behaves when the I²t limitation
occurs. Either this is only indicated in the statusword, or error E 31-0 is raised.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 38h
Name iit_error_enable
Info -- rw UINT16

Value 0, 1 0

Value Description

0 I²t error OFF (Reaction Warning)

1 I²t error ON (Reaction Disable Servo Drive)

If this object is written, the error reaction of error 31-0 is modified. If 0 is written, the error
reaction Warning is set. If 1 is written, the error reaction Disable servo drive is set. If the
object is read, the reaction Disable servo drive or higher is reported as 1, all other error
reactions as 0. See section 3.18 Error management on page 100.

3.5.2.10 Object 6510h_2Eh: motor_temperature
This object can be used to read out the current motor temperature if an analog
temperature sensor is connected. Otherwise, the value of the object is undefined.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 2Eh
Name motor_temperature
Info °C ro PDO INT16

Value -- --

EtherCAT and CANopen manual Page 58 of 191

3 Parameterisation

3.5.2.11 Object 6410h_14h: motor_temperature_sensor_polarity
This object can be used to define whether a normally closed contact or a normally open
contact is used as a digital motor temperature sensor.

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 14h
Name motor_temperature_sensor_polarity
Info -- rw PDO INT16

Value 0, 1 0

Value Description

0 Normally closed contact

1 Normally open contact

3.5.2.12 Object 6510h_2Fh: max_motor_temperature
If the motor temperature defined in this object is exceeded, the reaction as set in the
error management (error E 03-0, motor overtemperature analog) is executed. If a
reaction is parameterised which leads to the drive being switched off, an emergency
message is sent. For parameterisation of the error management, see section 3.18 Error
management on page 100.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 2Fh
Name max_motor_temperature
Info °C rw INT16

Value 20...300 --

EtherCAT and CANopen manual Page 59 of 191

3 Parameterisation

3.5.2.13 Object 60F6h: torque_control_parameters
The data of the current controller must be taken from the parameterisation program
MPC ServoCommander. The following conversions must be observed:
The gain of the current controller must be multiplied by 256. For a gain of 1.5 in the
"Current controller" menu of the parameterisation programMPC ServoCommander, the
value 384 = 180hmust be written into the torque_control_gain object.
The time constant of the current controller is specified in milliseconds in the
parameterisation programMPC ServoCommander. In order to be able to transfer this
time constant into the torque_control_time object, it must first be converted into
microseconds. For a specified time of 0.6 milliseconds, the value 600 must be entered
into the torque_control_time object accordingly. The lower limit must not be smaller than
the current cycle time of the current controller (see section 3.17.1.12Object 6510h_B0h:
cycletime_current_controller on page 97).

Index 60F6h
Name torque_control_parameters
Type RECORD 02h

Sub-Index 01h
Name torque_control_gain
Info 256 = „1“ rw UINT16

Value 0...(32*256) --

Sub-Index 02h
Name torque_control_time
Info µs rw UINT16

Value 104...64401 --

3.5.2.14 Object 203Ah: torque_feed_forward
Specifies the current feedforward factor. This is parameterised in 10-7 A per set
acceleration. This allows an acceleration profile set via CANopen to be run and the
current during acceleration to be recorded. The quotient of current and acceleration can
then be written directly to this object.

Index 203Ah
Name torque_feed_forward
Info A / (rev/min/s) rw UINT32

Value 0...208 --

EtherCAT and CANopen manual Page 60 of 191

3 Parameterisation

3.6 Velocity controller

3.6.1 Overview
 Damage to property due to incorrect settings

Incorrect settings of the controller parameters can lead to strong vibrations and
possibly destroy parts of the machine.

The parameter set of the servo drive must be adapted for the application. Especially the
gain is highly dependent on any masses coupled to the motor. The data must be
optimally determined during commissioning of the system using the MPC
ServoCommander parameterisation program.

3.6.2 Description of objects

3.6.2.1 Object 60F9h: velocity_control_parameters
The data of the speed controller can be taken from the parameterisation programMPC
ServoCommander. The following conversions must be observed:
The gain of the speed controller must be multiplied by 256. For a gain of 1.5 in the
"Speed controller" menu of the parameterisation program, the value 384 = 180hmust be
written into the velocity_control_gain object.
The time constant of the speed controller is given in milliseconds in the parameterisation
program. In order to be able to transfer this time constant into the object velocity_
control_time, it must first be converted into microseconds. For a given time of 2.0
milliseconds, the value 2000 must be entered into the object velocity_control_time
accordingly. The same applies to the object velocity_control_filter_time, with which the
actual speed value filter is parameterised.

Index 60F9h
Name velocity_control_parameter_set
Type RECORD 04h

Sub-Index 01h
Name velocity_control_gain
Info 256 = „1“ rw UINT16

Value 20...(64*256) --

Sub-Index 02h
Name velocity_control_time
Info µs rw UINT16

Value 1...32000 --

EtherCAT and CANopen manual Page 61 of 191

3 Parameterisation

Sub-Index 04h
Name velocity_control_filter_time
Info µs rw UINT16

Value 1...32000 --

3.6.2.2 Object 2073h: velocity_display_filter_time
The velocity_display_filter_time object can be used to set the filter time of the speed
actual value filter, which filters the actual value for display.

Index 2073h
Name velocity_display_filter_time
Info µs rw UINT32

Value 1000...50000 --

 Object is also used for overspeed-protection
Note that the object velocity_actual_value_filtered is used for the overspeed-
protection. If the filter time is very long, a overspeed error is only detected after a
respective delay.

EtherCAT and CANopen manual Page 62 of 191

3 Parameterisation

3.7 Position Controller

3.7.1 Overview
This chapter describes all parameters required for the position controller. The position
setpoint (position_demand_value) from the trajectory generator is applied to the input of
the position controller. In addition, the actual position value (position_actual_value) is
supplied by the angle encoder (resolver, incremental encoder etc.). The behavior of the
position controller can be influenced by parameters. To keep the position control loop
stable, a limitation of the output variable (control_effort) is possible. The output variable
is fed into the speed controller as a speed setpoint value. All input and output variables
of the position controller are converted by the Factor Group from the application-specific
units into the respective internal units of the servo drive.

Following error
The following_error_actual_value is the deviation of the actual position value (position_
actual_ value) from the position setpoint (position_demand_value). If this following error
is larger than specified in the following_error_window for a certain period of time, bit 13
following_error is set in the statusword object. The permissible time period can be
specified via the object following_error_time_out.

Figure 6: Following error – function overview

Figure 6 "Following error". It is monitored whether the difference between target position
(position_demand_value) and actual position (position_actual_value) leaves the
symmetrical following_error_window. If the position difference does not return to the
window within a certain period of time (following_error_time_out), bit 13 in the
statusword is set.

EtherCAT and CANopen manual Page 63 of 191

3 Parameterisation

Position reached (Target reached)
This function offers the possibility to define a position window around the target position.
If the actual position of the drive is within this range for a certain time - the position_
window_time - the associated bit 10 (target_reached) is set in the statusword.

Figure 7: Position reached - function overview

Figure 7. It is monitored whether the actual position (position_actual_value) is within the
symmetrical target position window (target_position+position_window, target_position-
position_window). If the actual position remains in the target window longer than the
waiting time (target_window_time) and the positioning is completed, bit 10 in the
statusword is set.

3.7.2 Description of objects

3.7.2.1 Object 60FBh: position_control_parameter_set
The parameter set of the servo drive must be adapted for the application. The data of the
position controller must be optimally determined with the aid of the programMPC
ServoCommander when the machine is commissioned.

 Damage to property due to incorrect settings
Incorrect settings of the controller parameters can lead to strong vibrations and
possibly destroy parts of the machine.

The position controller compares the setpoint position with the actual position and forms
a correction speed (object 60FAh: control_effort) from the difference - taking into
account the gain and possibly the integrator - which is fed to the speed controller. The
position controller is relatively slow compared to the current and speed controller.
Therefore, the servo drive works internally with feedforward controls, so that the
correction work for the position controller is minimised and the servo drive is quickly in
the steady state. A proportional element is normally sufficient as position controller.

EtherCAT and CANopen manual Page 64 of 191

3 Parameterisation

The position controller data can be taken from the parameterization programMPC
ServoCommander. The following conversions must be observed: The gain of the
position controller must be multiplied by 256. For a gain of 1.5 in the Position Controller
window of the parameterization program, the value 384 must be written into the object
position_control_gain.
Normally the position controller does not need an integrator. In this case, the value zero
must be entered in the object position_control_time. Otherwise, the time constant of the
position controller must be converted into microseconds. For a time of 4.0 milliseconds,
the value 4000 must be entered in the object position_control_time accordingly. Since
the position controller converts even the smallest position deviations into significant
correction speeds, in the event of a brief malfunction (e.g. brief clamping of the system),
this would result in very violent control reactions with very high correction speeds. This
can be avoided if the output of the position controller is limited sensibly (e.g. 500 min-1)
via the object position_control_v_max.
The object position_error_tolerance_window can be used to define the size of a position
deviation up to which the position controller does not act (dead band). This can be used
for stabilization purposes, for example, if there is backlash in the system.

Index 60FBh
Name position_control_parameter_set
Type RECORD 05h

Sub-Index 01h
Name position_control_gain
Info 256 = „1“ rw UINT16

Value 0...(64*256) --

Sub-Index 02h
Name position_control_time
Info µs rw UINT16

Value 0 --

Sub-Index 04h
Name position_control_v_max
Info speed_unit rw UINT32

Value 0...131072 min-1 --

Sub-Index 05h
Name position_error_tolerance_window
Info position_unit rw UINT32

Value -- --

EtherCAT and CANopen manual Page 65 of 191

3 Parameterisation

3.7.2.2 Object 6062h: position_demand_value
The current position setpoint can be read out via this object. This is fed into the position
controller by the travel curve generator.

Index 6062h
Name position_demand_value
Info position_unit ro PDO INT32

Value -- --

3.7.2.3 Object 202Dh: position_demand_sync_value
This object can be used to read the position setpoint of the synchronisation encoder.
This is defined by object 2022h synchronization_encoder_select.

Index 202Dh
Name position_demand_sync_value
Info position_unit ro INT32

Value -- --

3.7.2.4 Object 6064h: position_actual_value
The actual position can be read out via this object. This is fed to the position controller
from the angle encoder.

Index 6064h
Name position_actual_value
Info position_unit ro PDO INT32

Value -- --

3.7.2.5 Object 6066h: following_error_time_out
If a following error - longer than defined in this object - occurs, the corresponding bit 13
following_error is set in the statusword.

Index 6066h
Name following_error_time_out
Info ms rw PDO UINT16

Value 0...27314 --

EtherCAT and CANopen manual Page 66 of 191

3 Parameterisation

3.7.2.6 Object 6065h: following_error_window
The object following_error_window defines a symmetrical range around the position
setpoint (position_demand_value). If the actual position value (position_actual_value) is
outside the following_error_window, then a following error occurs and bit 13 in the
statusword is set. The reasons below can cause a following error:

l The drive is blocked
l The positioning speed is too high
l The acceleration values are too high
l The object following_error_window has a value that is too small
l The position controller is not correctly parameterised

Index 6065h
Name following_error_window
Info position_unit rw PDO UINT32

Value -- --

3.7.2.7 Object 60F4h: following_error_actual_value
The current difference between position_demand_value (6062h) and position_actual_
value (6064h) can be read from this object.

Index 60F4h
Name following_error_actual_value
Info position_unit ro PDO INT32

Value -- --

3.7.2.8 Object 60FAh: control_effort
The output value of the position controller can be read out via this object. This value is
fed internally into the speed controller as setpoint value.

Index 60FAh
Name control_effort
Info speed_unit ro PDO INT32

Value -- --

EtherCAT and CANopen manual Page 67 of 191

3 Parameterisation

3.7.2.9 Object 6410h_0Fh: rotor_position
The rotor_position can be read out via the object in per mil of one revolution.

Index 6410h
Name motor_data
Type RECORD 14h

Sub-Index 0Fh
Name rotor_position
Info ‰ (1000 = 1 rev) ro PDO UINT16

Value -- --

3.7.2.10 Object 6067h: position_window
The object position_window defines a symmetrical range around the target position. If
the actual position value (position_actual_value) is within this range for a certain time,
the target position is considered to be reached.

Index 6067h
Name position_window
Info position_unit rw PDO UINT32

Value -- --

3.7.2.11 Object 6068h: position_window_time
If the actual position of the drive is within the positioning window (position_window) for
as long as defined in this object, the corresponding bit 10 target_reached is set in the
statusword.

Index 6068h
Name position_window_time
Info ms rw PDO UINT16

Value -- --

EtherCAT and CANopen manual Page 68 of 191

3 Parameterisation

3.7.2.12 Object 6510h_22h: position_error_switch_off_limit
The maximum permissible deviation between the target and actual position can be
entered in the object position_error_switch_off_limit. In contrast to the Following Error
message above, the output stage is switched off immediately if this limit is exceeded and
an error is raised. The motor thus coasts down unbraked (unless there is a holding
brake).

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 22h
Name position_error_switch_off_limit
Info position_unit rw UINT32

Value -- --

Value Description

0 Switch-off limit following error OFF (Reaction No action)

> 0 Switch-off limit following error ON (Reaction Disable power stage
immediately)

If this object is written, the error reaction of error 17-0 is modified. If 0 is written, the error
reaction No action is set. If a value greater than 0 is written, the error reaction Disable
power stage immediately is set. If the object is read, the reaction Disable power stage
immediately is reported as 1, all other error reactions as 0. See also section 3.18 Error
management on page 100.

3.7.2.13 Object 2030h: set_position_absolute
The object set_position_absolute can be used to move the readable actual position
without changing the physical position. The drive does not carry out any movement. If an
absolute encoder system is connected, the position displacement is stored in the
encoder, if the encoder system allows this. In this case, the position offset is therefore
retained after a reset. This storage operation runs in the background independently of
this object. All parameters belonging to the encoder memory are also stored with their
current values.

Index 2030h
Name set_position_absolute
Info position_unit wo INT32

Value -- --

EtherCAT and CANopen manual Page 69 of 191

3 Parameterisation

3.7.2.14 Object 607Dh: software_position_limit
The object array software_position_limit contains two sub-parameters that limit the
maximum positioning range. If the drive leaves this range in Profile Position Mode, error
40-0 (Negative SW limit switch reached) or 40-1 (Positive SW limit switch reached) is
raised.

Index 607Dh
Name software_position_limit
Type ARRAY 02h

Sub-Index 01h
Name min_position_limit
Info position_unit rw PDO INT32

Value -- --

Sub-Index 02h
Name max_position_limit
Info position_unit rw PDO INT32

Value -- --

3.7.2.15 Object 607Bh: position_range_limit
The object array position_range_limit contains two sub-parameters that limit the
numerical range of the position values. If one of these limits is exceeded, the actual
position value automatically overflows to the other limit. This enables the
parameterisation of so-called rotary axes. The limits that should physically correspond
to the same position must be specified, for example 0° and 360°.
To make these limits effective, a rotary axis mode must be selected via 6510h_20h
(position_range_limit_enable) .

Index 607Bh
Name position_range_limit
Type ARRAY 02h

Sub-Index 01h
Name min_position_range_limit
Info position_unit rw PDO INT32

Value -- --

Sub-Index 02h
Name max_position_range_limit
Info position_unit rw PDO INT32

Value -- --

EtherCAT and CANopen manual Page 70 of 191

3 Parameterisation

3.7.2.16 Object 6510h_20h: position_range_limit_enable
Via the object position_range_limit_enable the range limits defined by the object 607Bh
can be activated. Different modes are possible:
If the mode "Shortest distance" is selected, positioning is always carried out on the
physically shorter distance to the target. The drive itself adjusts the sign of the travel
speed for this purpose. In the two modes with fixed direction of rotation, positioning is
always carried out only in the direction specified in the mode.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 20h
Name position_range_limit_enable
Info -- rw UINT16

Value 0...5 --

Value Description

0 Off

1 Shortest distance (for compatibility reasons)

2 Shortest distance

3 Reserved

4 Direction always „positive“

5 Direction always „negative“

EtherCAT and CANopen manual Page 71 of 191

3 Parameterisation

3.8 Setpoint limitation

3.8.1 Object 2415h: current_limitation
The current_limitation object record can be used to limit the maximum current for the
motor in the Profile Position Mode, Interpolated Position Mode, Cyclic Synchronous
Position Mode, Homing Mode and Profile Velocity Mode, thus allowing torque-limited
speed operation, for example. The limit_current_input_channel object is used to specify
the source of the limiting torque setpoint. Here you can choose between setting a direct
setpoint (fixed value) or using an analogue input. The limit_current object is used to
specify either the limiting torque (source = fixed value) or the scaling factor for the
analogue inputs (source = AINx), depending on the selected source. In the first case, the
current is directly limited to the torque-proportional fixed value in mA, in the second case
the current in mA is specified, which should correspond to an applied voltage of 10V.

Index 2415h
Name current_limitation
Type RECORD 02h

Sub-Index 01h
Name limit_current_input_channel
Info -- rw PDO INT8

Value 0...4 0

Sub-Index 02h
Name limit_current
Info mA rw PDO INT32

Value -- --

Value Description

0 No limit

1 AIN0

2 AIN1

3 AIN2

4 Fixed value / fieldbus (fieldbus selector 2)

EtherCAT and CANopen manual Page 72 of 191

3 Parameterisation

3.8.2 Object 2416h: speed_limitation
The speed_limitation object group can be used to limit the maximum speed of the motor
in Profile Torque Mode, thus allowing speed-limited torque operation.
The limit_speed_input_channel object is used to specify the setpoint source of the
limiting speed. Here you can choose between setting a direct setpoint (fixed value) or
using an analogue input. The limit_speed object is used to specify either the limiting
speed (source = fixed value) or the scaling factor for the analog inputs (source = AINx),
depending on the selected source. In the first case, the speed is directly limited to the
fixed value, in the second case the speed is specified, which should correspond to an
applied voltage of 10V.

Index 2416h
Name speed_limitation
Type RECORD 02h

Sub-Index 01h
Name limit_speed_input_channel
Info -- rw INT8

Value 0...4 0

Sub-Index 02h
Name limit_speed
Info speed_unit rw INT32

Value -- --

Value Description

0 No limit

1 AIN0

2 AIN1

3 AIN2

4 Fixed value / fieldbus (fieldbus selector 2)

EtherCAT and CANopen manual Page 73 of 191

3 Parameterisation

3.9 Encoder adaptation

3.9.1 Overview
This chapter describes the configuration of the angle encoder input X2A, X2B and the
master frequency input (BL 4000-C, BL 4000-M / BL 4000-D: X1).

 Damage to property due to incorrect angle encoder settings
Incorrect angle encoder settings can cause the drive to rotate uncontrollably and
possibly destroy parts of the machine.

3.9.2 Description of objects

3.9.2.1 Object 2024h: encoder_x2a_data_field
The object record encoder_x2a_data_field contains parameters that are necessary for
the operation of the angle encoder at connector X2A.
Since many encoder settings are only effective after a reset, the selection and setting of
the encoders should be done via the MPC ServoCommander. The following settings can
be read or changed via CANopen:
The object encoder_x2a_resolution specifies how many increments are generated by
the encoder per revolution or length unit. Since only resolvers can be connected to input
X2A, which are always evaluated with 16 bits, 65536 is always returned here. The
objects encoder_x2a_numerator and encoder_x2a_divisor can be used to take into
account a possible gear (also with sign) between motor shaft and encoder.

Index 2024h
Name encoder_x2a_data_field
Type RECORD 03h

Sub-Index 01h
Name encoder_x2a_resolution
Info Increments (4 * line count) ro UINT32

Value -- --

Sub-Index 02h
Name encoder_x2a_numerator
Info -- rw INT16

Value -32768...-1,1...32767 1

Sub-Index 03h
Name encoder_x2a_divisor
Info -- rw INT16

Value 1...32767 1

EtherCAT and CANopen manual Page 74 of 191

3 Parameterisation

3.9.2.2 Object 2026h: encoder_x2b_data_field
The object record encoder_x2b_data_field contains parameters that are necessary for
the operation of the angle encoder at connector X2B.
The object encoder_x2b_resolution specifies how many increments are generated by
the encoder per revolution (for incremental encoders this is four times the number of
lines or periods per revolution) or length unit. The object encoder_x2b_counter returns
the currently counted number of increments, i.e. values between 0 and encoder_x2b_
resolution-1.
The objects encoder_x2b_numerator and encoder_x2b_divisor can be used to take into
account a possible gear (also with sign) between motor shaft and encoder.

Index 2026h
Name encoder_x2b_data_field
Type RECORD 16h

Sub-Index 01h
Name encoder_x2b_resolution
Info Increments (4 * line count) rw UINT32

Value -- --

Sub-Index 02h
Name encoder_x2b_numerator
Info -- rw INT16

Value -32768...-1,1...32767 1

Sub-Index 03h
Name encoder_x2b_divisor
Info -- rw INT16

Value 1...32767 1

Sub-Index 04h
Name encoder_x2b_counter
Info Increments (4 * line count) ro PDO UINT32

Value 0… (encoder_x2b_resolution –
1) --

3.9.2.3 Object 2025h: encoder_x10_data_field
The object record encoder_x10_data_field contains parameters that are necessary for
the operation of the master frequency input, which is located on connector X1 in the
BL 4000 devices series.
A digital incremental encoder or emulated incremental signals, for example from another
servo drive (master frequency output), can be connected to the master frequency input.
The signals of the master frequency input can optionally be used as setpoint or actual
value.
The object encoder_x10_resolution specifies how many increments are generated by
the encoder per revolution (for incremental encoders this is four times the number of

EtherCAT and CANopen manual Page 75 of 191

3 Parameterisation

lines or periods per revolution) or length unit. The object encoder_x10_counter returns
the currently counted number of increments, i.e. values between 0 and encoder_x10_
resolution-1.
The objects encoder_x10_numerator and encoder_x10_divisor can be used to take into
account a possible gear (also with sign) between motor shaft and encoder. When using
the master frequency input as setpoint, this can be used to realise gear ratios between
master and slave.

Index 2025h
Name encoder_x10_data_field
Type RECORD 05h

Sub-Index 01h
Name encoder_x10_resolution
Info Increments (4 * line count) rw UINT32

Value encoder dependent --

Sub-Index 02h
Name encoder_x10_numerator
Info -- rw INT16

Value -32768...-1,1...32767 1

Sub-Index 03h
Name encoder_x10_divisor
Info -- rw INT16

Value 1...32767 1

Sub-Index 04h
Name encoder_x10_counter
Info Increments (4 * line count) ro PDO UINT32

Value 0… (encoder_x10_resolution –
1) --

Sub-Index 05h
Name encoder_x10_position
Info -- ro PDO INT32

Value -- --

3.9.2.4 Object 202Ch: max_comm_enc_pos_enc_difference
The object max_comm_enc_pos_enc_difference returns the maximum difference
between the commutation encoder and the actual position encoder.

Index 202Ch
Name max_comm_enc_pos_enc_difference
Info position_unit rw PDO INT32

Value -- --

EtherCAT and CANopen manual Page 76 of 191

3 Parameterisation

3.10 Master frequency output

3.10.1 Overview
This object group is used to parameterise the master frequency output BL 4000-C,
BL 4000-M / BL 4000-D: X1). Thus, master-slave applications in which the master
frequency output (incremental encoder emulation) of the master is connected to the
master frequency input of the slave can be parameterised via CANopen.

3.10.2 Description of objects

3.10.2.1 Object 201Ah: encoder_emulation_data
The object record encoder_emulation_data contains all options for the master frequency
output.
Using the object encoder_emulation_resolution the output number of increments (= four
times the number of lines) can be set as a multiple of 4. In a master-slave application,
this must correspond to the encoder_X10_resolution of the slave to achieve a ratio of
1:1.
With the object encoder_emulation_offset the position of the output zero pulse can be
shifted in relation to the zero position of the actual value encoder.

Index 201Ah
Name encoder_emulation_data
Type RECORD 02h

Sub-Index 01h
Name encoder_emulation_resolution
Info Increments (4 * line count) rw INT32

Value 4 * (1…8192) --

Sub-Index 02h
Name encoder_emulation_offset
Info 32767 = 180° rw INT16

Value -32768…32767 --

3.10.2.2 Object 2028h: encoder_emulation_resolution
The object encoder_emulation_resolution only exists for compatibility reasons. It
corresponds to object 201Ah_01h.

EtherCAT and CANopen manual Page 77 of 191

3 Parameterisation

3.11 Setpoint / actual value selection

3.11.1 Overview
The following objects can be used to change the source for the setpoint and the actual
value. By default, the servo drive uses the input for the motor encoder X2A or X2B as the
actual value for the position controller. When using an external position encoder, e.g.
behind a gearbox, the position value fed in via the master frequency input can be used
as the actual value for the position controller. Furthermore, it is possible to use the
master frequency input as an additional setpoint, which allows synchronous operating
modes. For reasons of downward compatibility, the objects for parameterising the
master frequency input are always designated "_X10_", even if the master frequency
input is located on the connector [X1], as is the case with the BL 4000 controller family.

3.11.2 Description of objects

3.11.2.1 Object 201Fh: commutation_encoder_select
The object commutation_encoder_select specifies the encoder input that is used as
commutation encoder. Since this value only becomes effective after a reset, the
commutation encoder should always be set via the MPC ServoCommander .

Index 201Fh
Name commutation_encoder_select
Info -- rw INT16

Value 0, 2 --

Value Description

0 X2A

2 X2B

EtherCAT and CANopen manual Page 78 of 191

3 Parameterisation

3.11.2.2 Object 2021h: position_encoder_selection
The object position_encoder_selection specifies the encoder input that is used to
determine the actual position (actual position encoder). This value can be changed in
order to switch to "position control via an external encoder" (connected to the driven
side). It is possible to switch between master frequency input and the encoder input that
is selected as commutation encoder (X2A or X2B). If one of the encoder inputs X2A /
X2B is selected as actual position encoder, the one used as commutation encodermust
be used. If the respective other encoder is selected, the system automatically switches
over to the commutation encoder.

Index 2021h
Name position_encoder_selection
Info -- rw INT16

Value 0...2 --

Value Description

0 X2A

1 X2B

2 Master frequency input

 Permissible combinations
The following combinations are permitted:

Commutating encoder X2A, position encoder: master frequency input
Commutating encoder X2B, position encoder: master frequency input

The following combinations are not permitted:

Commutating encoder X2A, position encoder: X2B
Commutating encoder X2B, position encoder: X2A

3.11.2.3 Object 2022h: synchronisation_encoder_selection
The object synchronisation_encoder_selection specifies the encoder input via which the
synchronisation setpoint is fed in. Depending on the operating mode, this is equivalent
to a position setpoint (Profile Position Mode) or a speed setpoint (Profile Velocity Mode).
Only the master frequency input can be used as synchronisation input. Thus, it is
possible to select between "Master frequency input" and "No encoder". Do not select the
same input as used for the actual value encoder as the synchronisation setpoint.

Index 2022h
Name synchronisation_encoder_selection
Info -- rw INT16

Value -1, 2 --

Value Description

-1 No encoder / undefined

2 Master frequency input

EtherCAT and CANopen manual Page 79 of 191

3 Parameterisation

3.11.2.4 Object 202Fh: synchronisation_selector_data
The object synchronisation_main can be used to activate a synchronous setpoint. Bit 0
must be set so that the synchronous setpoint is calculated at all. Bit 1 enables the
synchronous position to be switched on only after starting a position set (flying saw). Bit
8 can be used to specify that the homing run should be executed without switching on
the synchronous position in order to be able to reference the master and slave
separately.

Index 202Fh
Name synchronisation_selector_data
Type RECORD 07h

Sub-Index 07h
Name synchronisation_main
Info -- rw UINT16

Value see Table --

Bit Value Description

0 0001h 0: Synchronisation inactive
1: Synchronisation active

1 0002h 0: "Flying saw" inactive
1: "Flying saw" active

8 0100h 0: Synchronization during homing
1: No synchronization during homing

3.11.2.5 Object 2023h: synchronisation_filter_time
The object synchronisation_filter_time is used to define the filter time constant of a PT1
filter with which the synchronisation speed is smoothed. This may be necessary
especially with low line numbers, since even small changes of the input value
correspond to high speeds. On the other hand, the drive may no longer be able to follow
a dynamic input signal fast enough at high filter times.

Index 2023h
Name synchronisation_filter_time
Info µs rw UINT32

Value 10...50000 --

EtherCAT and CANopen manual Page 80 of 191

3 Parameterisation

3.12 Analogue inputs

3.12.1 Overview
The servo drives have analogue inputs, which may be used to provide setpoints to the
servo drive, for example. For all these analogue inputs, the following objects offer the
possibility of reading out the current input voltage (analog_input_voltage) and setting an
offset (analog_input_offset). Depending on the servo drive series (BL 4000-M /
BL 4000-D, BL 4000-C), there are different numbers of analogue inputs.

3.12.2 Description of objects

3.12.2.1 Object 2400h: analog_input_voltage
The object group analog_input_voltage supplies the current input voltage of the
respective channel in millivolts including the offset.

Index 2400h
Name analog_input_voltage
Type ARRAY 03h

Sub-Index 01h
Name analog_input_voltage_ch_0
Info mV ro PDO INT16

Value -- --

Sub-Index 02h
Name analog_input_voltage_ch_1
Info mV ro PDO INT16

Value -- --

Sub-Index 03h
Name analog_input_voltage_ch_2
Info mV ro PDO INT16

Value -- --

EtherCAT and CANopen manual Page 81 of 191

3 Parameterisation

3.12.2.2 Object 2401h: analog_input_offset
Via the object group analog_input_offset the offset voltage in millivolts can be set or
read for the respective inputs. With the help of the offset, a possible applied DC voltage
can be compensated. A positive offset compensates a positive input voltage.

Index 2401h
Name analog_input_offset
Type ARRAY 03h

Sub-Index 01h
Name analog_input_offset_ch_0
Info mV rw INT32

Value -10000...10000 --

Sub-Index 02h
Name analog_input_offset_ch_1
Info mV rw INT32

Value -10000...10000 --

Sub-Index 03h
Name analog_input_offset_ch_2
Info mV rw INT32

Value -10000...10000 --

EtherCAT and CANopen manual Page 82 of 191

3 Parameterisation

3.13 Digital inputs and outputs

3.13.1 Overview
All digital inputs of the servo drive can be read via the CAN bus and almost all digital
outputs can be set as required. Furthermore, status messages can be assigned to the
digital outputs of the servo drive. Depending on the devices series, not all digital
inputs/outputs described here may be available for every device.

3.13.2 Description of objects

3.13.2.1 Object 60FDh: digital_inputs
Via the object 60FDh the digital inputs may be read:

Index 60FDh
Name digital_inputs
Info -- ro PDO UINT32

Value see Table --

Bit Value Digital input

0 00000001h Negative limit switch

1 00000002h Positive limit switch

2 00000004h Reference switch

3 00000008h Interlock
(Controller enable or Powerstage enable or STOmissing)

24...27 0F000000h DIN0...DIN3

28 10000000h DIN8

29 20000000h BL 4100-C: DIN4

3.13.2.2 Object 60FEh: digital_outputs
Via object 60FEh the digital outputs may be controlled. A set bit in object digital_
outputs_mask specifies which digital output is to be controlled. Via the digital_outputs_
data object the selected outputs can then be set as required. Please note that a delay of
up to 10 ms can occur when controlling the digital outputs. When the outputs are actually
set can be determined by reading back object 60FEh.

EtherCAT and CANopen manual Page 83 of 191

3 Parameterisation

Index 60FEh
Name digital_outputs
Type ARRAY 02h

Sub-Index 01h
Name digital_outputs_data
Info -- rw PDO UINT32

Value -- --

Sub-Index 02h
Name digital_outputs_mask
Info -- rw PDO UINT32

Value -- --

Bit Value Digital output

0 00000001h 1 = Applying the brake

25...27 0E000000h DOUT1...DOUT3

 Damage to property possible
If control of the brake is enabled via digital_output_mask, the holding brake is released
manually by clearing bit 0 in digital_output_data!

This can cause the axis to drop in the case of hanging axes.

3.13.2.3 Object 2420h: digital_output_state_mapping
The object group digital_outputs_state_mapping can be used to issue various status
messages of the servo drive via the digital outputs. For the integrated digital outputs of
the servo drive, there is a separate sub-index for each output.
If such a status message has been assigned to a digital output and the output is then
switched on or off directly via digital_outputs (60FEh), the digital_outputs_state_
mapping object is also set to OFF (0) or ON (12).

Index 2420h
Name digital_outputs_state_mapping
Type RECORD 12h

Sub-Index 01h
Name dig_out_state_mapp_dout_1
Info -- rw UINT8

Value 0...16, see Table --

Sub-Index 02h
Name dig_out_state_mapp_dout_2
Info -- rw UINT8

Value 0...16, see Table --

EtherCAT and CANopen manual Page 84 of 191

3 Parameterisation

Sub-Index 03h
Name dig_out_state_mapp_dout_3
Info -- rw UINT8

Value 0...16, see Table --

Value Description Value Description

0 Off (Output is low) 9 Undervoltage intermed. circuit

1 Position Xset = Xdest 10 Brake unlocked

2 Position Xact = Xdest 11 Power stage active

3 Reserved 12 On (Output is high)

4 Remaining distance 13 Reserved

5 Homing active 14 Reserved

6 Speed reached 15 Linear motor identified

7 I²t monitoring active 16 Homing position valid

8 Following error

EtherCAT and CANopen manual Page 85 of 191

3 Parameterisation

3.14 Limit switch / Reference switch

3.14.1 Overview
For defining the reference position of the servo drive, either limit switches or homing
switches can be used. More information about the possible homing methods can be
found in section 5.2 Homing Mode on page 124.

3.14.2 Description of objects

3.14.2.1 Object 6510h_11h: limit_switch_polarity
The polarity of the limit switches can be programmed by the object 6510h_11h (limit_
switch_polarity). A zero must be entered in this object for normally closed contacts, a
one must be entered when using normally open contacts.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 11h
Name limit_switch_polarity
Info -- rw INT16

Value 0, 1 1

Value Description

0 Normally closed contact

1 Normally open contact

EtherCAT and CANopen manual Page 86 of 191

3 Parameterisation

3.14.2.2 Object 6510h_12h: limit_switch_selector
Via object 6510h_12h (limit_switch_selector) the assignment of the limit switches
(negative, positive) can be swapped without having to make changes to the cabling. To
exchange the assignment of the limit switches, enter a one.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 12h
Name limit_switch_selector
Info -- rw INT16

Value 0, 1 0

Value Description

0 DIN6 = E0 (negative limit switch)
DIN7 = E1 (positive limit switch)

1 DIN6 = E1 (positive limit switch)
DIN7 = E0 (negative limit switch)

3.14.2.3 Object 6510h_15h: limit_switch_deceleration
The limit_switch_deceleration object determines the deceleration used for braking when
the limit switch is reached during normal operation (limit switch emergency ramp).

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 15h
Name limit_switch_deceleration
Info acceleration_unit rw INT32

Value 0...3000000 min-1/s --

EtherCAT and CANopen manual Page 87 of 191

3 Parameterisation

3.14.2.4 Object 6510h_14h: homing_switch_polarity
The polarity of the reference switch can be configured by object 6510h_14h (homing_
switch_polarity). For an opening reference switch, a zero must be entered in this object,
for the use of closing contacts a one must be entered.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 14h
Name homing_switch_polarity
Info -- rw INT16

Value 0, 1 1

Value Description

0 Normally closed contact

1 Normally open contact

3.14.2.5 Object 6510h_13h: homing_switch_selector
Object 6510h_13h (homing_switch_selector) determines whether DIN8 or DIN9 should
be used as input for the reference switch.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 13h
Name homing_switch_selector
Info -- rw INT16

Value 0, 1 0

Value Description

0 DIN9

1 DIN8

EtherCAT and CANopen manual Page 88 of 191

3 Parameterisation

3.15 Position capturing (Sampling)

3.15.1 Overview
The servo drives offer the possibility of capturing the actual position value on the rising
or falling edge of a digital input (e.g. a measuring probe). This position value can then be
read out, e.g. for calculation within a control system.
All necessary objects are summarised in the record sample_data: The object sample_
mode determines the type of sampling: Should only a single sample event be recorded
or should sampling be continuous. Using the object sample_status, the controller can
query whether a sample event has occurred. This is indicated by a set bit, which can
also be displayed in the statusword if the object sample_status_mask is set accordingly.
The object sample_control is used to control the release of the sample event and the
sampled positions can be read out via the objects sample_position_rising_edge and
sample_position_falling_edge.
Which digital input is used can be defined with the MPC ServoCommander under
Parameters / IOs / Digital Inputs / Sample Input.

3.15.2 Description of objects

3.15.2.1 Object 204Ah: sample_data
Index 204Ah
Name sample_data
Type RECORD 06h

The following object can be used to select whether the position is to be determined on
each occurrence of a sample event (continuous sampling) or whether sampling is to be
disabled after a sample event until sampling is enabled again. Please note that even a
bouncing input can trigger both edges.

Sub-Index 01h
Name sample_mode
Info -- rw UINT16

Value 0...1 --

Value Description

0 Continuous sampling

1 Autolock sampling

EtherCAT and CANopen manual Page 89 of 191

3 Parameterisation

The following object indicates a new sample event.

Sub-Index 02h
Name sample_status
Info -- ro PDO UINT8

Value 0...3 --

Bit Value Name Description

0 01h falling_edge_occurred = 1: Position sampled (falling edge)

1 02h rising_edge_occurred = 1: Position sampled (rising edge)

The following object can be used to specify those bits of the sample_status object that
should also lead to the setting of bit 15 of the statusword. This means that the
information "Sample event occurred" is available in the statusword, which is usually
transferred anyway. Only if "Sample event occurred" is displayed there, the controller
must read the sample_status object to determine which edge has occurred.

Sub-Index 03h
Name sample_status_mask
Info -- rw PDO UINT8

Value 0...3 --

Bit Value Name Description

0 01h falling_edge_visible If falling_edge_occured = 1 Bit 15 is set
in the statusword

1 02h rising_edge_visible If rising_edge_occured = 1 Bit 15 is set in
the statusword

Setting the respective bit in sample_control resets the corresponding status bit in
sample_status and, in case of "Autolock" sampling, enables sampling again.

Sub-Index 04h
Name sample_control
Info -- wo PDO UINT8

Value 0...3 0

Bit Value Name Description

0 01h falling_edge_enable Sampling on falling edge

1 02h rising_edge_enable Sampling on rising edge

EtherCAT and CANopen manual Page 90 of 191

3 Parameterisation

The following objects contain the sampled positions.

Sub-Index 05h
Name sample_position_rising_edge
Info position_unit ro PDO INT32

Value -- --

Sub-Index 06h
Name sample_position_falling_edge
Info position_unit ro PDO INT32

Value -- --

EtherCAT and CANopen manual Page 91 of 191

3 Parameterisation

3.16 Brake control

3.16.1 Overview
The following objects can be used to parameterise how the servo drive controls a
holding brake that may be integrated in the motor. The holding brake is always enabled
as soon as the servo drive enable is switched on. For holding brakes with high
mechanical inertia, a delay time tA can be parameterised so that the holding brake is
engaged before the power stage is switched off (sagging of vertical axes). Similarly, the
control of the motor is delayed (tF) until the holding brake is completely released. Both
delays are parameterised simultaneously by the object brake_delay_time (tA = tF).

Figure 8: Function of brake delay (for speed control / positioning)

3.16.2 Description of objects

3.16.2.1 Object 6510h_18h: brake_delay_time
The braking delay time can be parameterised via the object brake_delay_time.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index 18h
Name brake_delay_time
Info ms rw UINT16

Value 0...32000 --

EtherCAT and CANopen manual Page 92 of 191

3 Parameterisation

3.17 Device information
Numerous CAN objects can be used to read a wide variety of information from the
device, such as servo drive type, firmware used, etc.

3.17.1 Description of objects

3.17.1.1 Object 1000h: device_type
The device_type object indicates in the lower 16 bits that device profile 402 is supported
and in the upper 16 bits that it is a servo drive (bit 17).

Index 1000h
Name device_type
Info -- ro UINT32

Value -- 00020192h

3.17.1.2 Object 1008h: manufacturer_device_name
Via the object manufacturer_device_name the name of the device series can be read in
plain text.

Index 1008h
Name manufacturer_device_name
Info -- ro VISSTR

Value -- --

3.17.1.3 Object 1009h: manufacturer_hardware_version
The manufacturer_hardware_version object can be used to read the hardware revision
of the device. This is also displayed in the MPC ServoCommander under Help / Info Tab
Firmware / Hardware.

Index 1009h
Name manufacturer_hardware_version
Info MMM.SSS ro VISSTR

Value -- --

Value Description

M main version

S sub version

EtherCAT and CANopen manual Page 93 of 191

3 Parameterisation

3.17.1.4 Object 100Ah: manufacturer_software_version
The manufacturer_software_version object can be used to read the firmware version in
plain text. The individual parts of the version number are formatted as ASCII characters
without leading zeros and are separated by dots, e.g. "1.0.0.1.2".

Index 100Ah
Name manufacturer_software_version
Info M.S.C.K.k ro VISSTR

Value -- --

Value Description

M Corresponds to MMMM ofObject 6510h_A9h: firmware_main_
version

S Corresponds to SSSS ofObject 6510h_A9h: firmware_main_
version

C Corresponds toObject 6510h_AAh: firmware_custom_version

K Corresponds to MMMM ofObject 6510h_ADh: km_release

k Corresponds to SSSS ofObject 6510h_ADh: km_release

3.17.1.5 Object 1018h: identity_object
The servo drive can be uniquely identified in a CANopen network via the identity_object
defined in DS301. For this purpose, the vendor code (vendor_id), a unique product code
(product_code), the revision number of the CANopen implementation (revision_number)
and the serial number (serial_number) can be read out.

Index 1018h
Name identity_object
Type RECORD 04h

Sub-Index 01h
Name vendor_id
Info -- ro UINT32

Value -- 000000E4h

Sub-Index 02h
Name product_code
Info -- ro UINT32

Value -- --

Value Description

8202h BL 4102-C

8203h BL 4104-C

8208h BL 4304-C

8209h BL 4308-C

EtherCAT and CANopen manual Page 94 of 191

3 Parameterisation

Value Description

8212h BL 4312-C

820Ah BL 4104-M ETH

820Ch BL 4104-D ETH

820Dh BL 4840-M ETH

820Fh BL 4840-D ETH

820Bh BL 4104-M CAN

8210h BL 4104-D CAN

820Eh BL 4840-M CAN

8211h BL 4840-D CAN

Sub-Index 03h
Name revision_number
Info -- ro UINT32

Value -- 00040002h

Sub-Index 04h
Name serial_number
Info -- ro UINT32

Value -- --

3.17.1.6 Object 6510h_A0h: drive_serial_number
The object drive_serial_number returns the serial number of the servo drive . This object
is used to ensure compatibility with earlier versions.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index A0h
Name drive_serial_number
Info -- ro UINT32

Value -- --

EtherCAT and CANopen manual Page 95 of 191

3 Parameterisation

3.17.1.7 Object 6510h_A1h: drive_type
The drive_type object can be used to read the product code of the servo drive. This
object is used to ensure compatibility with earlier versions.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index A1h
Name drive_type
Info see 1018h_02h (product code) ro UINT32

Value see 1018h_02h (product code) --

3.17.1.8 Object 6510h_A9h: firmware_main_version
The firmware_main_version object can be used to read the main version number of the
firmware (product step).

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index A9h
Name firmware_main_version
Info MMMMSSSSh ro UINT32

Value -- --

Value Description

M main version

S sub version

3.17.1.9 Object 6510h_AAh: firmware_custom_version
The object firmware_custom_version can be used to read the version number of the
customer-specific variant of the firmware.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index AAh
Name firmware_custom_version
Info -- ro UINT32

Value -- --

EtherCAT and CANopen manual Page 96 of 191

3 Parameterisation

3.17.1.10 Object 6510h_ADh: km_release
The version number of the km_release can be used to differentiate between firmware
versions of the same product level.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index ADh
Name km_release
Info MMMMSSSSh ro UINT32

Value -- --

Value Description

M main version

S sub version

3.17.1.11 Object 6510h_ACh: firmware_type
The firmware_type object is present for compatibility reasons and has no significance for
the BL 4000 series.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index ACh
Name firmware_type
Info 000000GXh ro UINT32

Value F2h --

3.17.1.12 Object 6510h_B0h: cycletime_current_controller
The object cycletime_current_controller returns the cycle time of the current controller in
microseconds.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index B0h
Name cycletime_current_controller
Info µs ro UINT32

Value -- --

EtherCAT and CANopen manual Page 97 of 191

3 Parameterisation

3.17.1.13 Object 6510h_B1h: cycletime_velocity_controller
The object cycletime_velocity_controller returns the cycle time of the speed controller in
microseconds.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index B1h
Name cycletime_velocity_controller
Info µs ro UINT32

Value -- --

3.17.1.14 Object 6510h_B2h: cycletime_position_controller
The object cycletime_position_controller returns the cycle time of the position controller
in microseconds.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index B2h
Name cycletime_position_controller
Info µs ro UINT32

Value -- --

3.17.1.15 Object 6510h_B3h: cycletime_trajectory_generator
The object cycletime_trajectory_generator returns the cycle time of the trajectory
generator in microseconds.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index B3h
Name cycletime_trajectory_generator
Info µs ro UINT32

Value -- --

EtherCAT and CANopen manual Page 98 of 191

3 Parameterisation

3.17.1.16 Object 6510h_C0h: commissioning_state

 Unsuitable parameterisation possible
This object does not contain any information about whether the servo drive has been
parameterised correctly according to the motor and the application, but only whether
the points mentioned were parameterised at least once after delivery.

„A“ on the 7-segment display
Note that at least one bit must be set in the commissioning_state object to suppress
the "A" on the display of your servo drive.

Index 6510h
Name drive_data
Type RECORD F0h

Sub-Index C0h
Name commissioning_state
Info -- rw UINT32

Value -- --

Bit Description Bit Description

0 Nominal current valid 9 Reserved

1 Maximum current valid 10 Physical units valid

2 Number of poles of motor valid 11 Speed controller valid

3 Offset angle / direction of rotation valid 12 Position controller valid

4 Reserved 13 Monitoring parameter valid

5 Offset angle / direction of rotation Hall
sensor valid

14 Reserved

6 Reserved 15 Limit switch polarity valid

7 Absolute position encoder system valid 16...31 Reserved

8 Current controller parameters valid

3.17.1.17 Object 20FDh: user_device_name
The user_device_name object can be used to read and write the user-definable name of
the drive (e.g. "X-axis").

Index 20FDh
Name user_device_name
Info -- rw VISSTR

Value -- --

EtherCAT and CANopen manual Page 99 of 191

3 Parameterisation

3.18 Error management

3.18.1 Overview
The servo drives offer the possibility to change the error reaction of individual events,
such as the occurrence of a following error. As a result, the servo drive reacts differently
when a particular event occurs: Depending on the setting, the servo drive will
decelerate, the power stage will be switched off immediately or only a warning will be
shown on the display.
A fixed minimum reaction is provided for each event, which must not be fallen below.
This means that "critical" errors such as "06-0 short-circuit of the power stage" cannot be
reparameterised, as in this case an immediate switch-off is necessary to protect the
servo drive from being destroyed.
If a lower error response than permitted for the respective error is entered, the value is
limited to the lowest permitted error response. A list of all error numbers can be found in
the “Product Manual smartServo BL 4000”.

3.18.2 Description of objects

3.18.2.1 Object 2100h: error_management
Index 2100h
Name error_management
Type RECORD 02h

In the object error_number the main error number is specified whose reaction should be
changed. The main error number is the one usually given before the hyphen (for
example, error 08-2, main error number 8).

Sub-Index 01h
Name error_number
Info -- rw UINT8

Value 1...96 --

EtherCAT and CANopen manual Page 100 of 191

3 Parameterisation

The reaction of the error can be changed in the object error_reaction_code. If the
response is less than the manufacturer's minimum response, the system limits the error
to this. The actual reaction set can be determined by reading it back.

Sub-Index 02h
Name error_reaction_code
Info -- rw UINT8

Value 0, 1, 3, 5, 7, 8 --

Value Description

0 No action

1 Entry into buffer

3 Warning on the 7-segment display

5 Disable servo drive

7 Stop at maximum current

8 Disable power stage immediately

3.18.2.2 Object 200Fh: last_warning_code
Warnings are remarkable events of the drive (e.g. a following error), which, in contrast to
an error, should not lead to a shutdown of the drive. Warnings are shown on the 7-
segment display of the servo drive and are then automatically reset.
The last occurred warning can be read out via the following object: Thereby bit 15
indicates whether the warning is currently still active.

Index 200Fh
Name last_warning_code
Info -- ro PDO UINT16

Value -- --

Bit Value Description

0... 3 000Fh Warning sub-number

4...11 0FF0h Warning main number

15 8000h Warning is active

EtherCAT and CANopen manual Page 101 of 191

4 Device Control

4 Device Control

4.1 Overview
The following chapter describes how the servo drive is controlled under CANopen, i.e.
how the power stage is switched on or an error is acknowledged.
Under CANopen, the entire control of the servo drive can be realised via two objects:
The host can operate the servo drive via the controlword, while the status of the servo
drive can be read back in the statusword. The following terms are used to explain servo
drive control:

Keyword Explanation

State The servocontroller is in different states depending on
whether the power stage is switched on or an error has
occurred. The states defined under CANopen are
presented in the following chapter.
Example: OPERATION_ENABLE

State Transition Like the states, CANopen also defines how to go from one
state to another (e.g. to acknowledge an error). State
transitions are triggered by the host by setting bits in the
controlword or internally by the servocontroller if it detects
an error, for example

Command To trigger state transitions, certain combinations of bits
must be set in the controlword. Such a combination is
called a command.
Example: Enable Operation

State Machine The states and state transitions together form the State
Machine diagram, i.e. the overview of all states and
possible transitions.

EtherCAT and CANopen manual Page 102 of 191

4 Device Control

4.2 State Machine
The status diagram can be roughly divided into three areas: "Power Disabled" means
that the power stage is switched off and "Power Enabled" means that the power stage is
switched on. The "Fault" area summarises the states necessary for error handling.

Figure 9: State diagram of the servo drive

After switching on, the servo drive initialises itself and finally reaches the SWITCH_ON_
DISABLED state. In this state, the CAN communication is fully functional and the servo
drive can be parameterised (e.g. the operating mode "speed control" can be set). The
output stage is switched off and the motor shaft can therefore rotate freely. By means of
the state transitions 2, 3, 4 - which in principle corresponds to the CAN servo drive
enable - the OPERATION_ENABLE state is reached. In this state, the power stage is
switched on and the motor is controlled according to the set operating mode. Therefore,
before doing so, make absolutely sure that the drive is correctly parameterised and a
corresponding setpoint value is zero. State transition 9 corresponds to disabling the
drive, i.e. a motor still running would coast down uncontrolled. If an error occurs, the
drive (regardless of its current state) ultimately switches to the FAULT state. Depending
on the severity of the fault, certain actions, such as emergency braking, can be carried
out beforehand (FAULT_REACTION_ACTIVE).
To execute the mentioned state transitions certain bit combinations must be set in the
controlword (see below). The lower 4 bits of the controlword are evaluated together to
trigger a state transition. In the following only the most important state transitions 2, 3, 4,
9 and 15 are explained. A table of all possible states and state transitions can be found
at the end of this chapter.

EtherCAT and CANopen manual Page 103 of 191

4 Device Control

Important state transitions
The following table contains in the 1st column the desired state transition and in the 2nd
column the necessary prerequisites for it (usually a command by the host, shown here
with a frame). How this command is generated, i.e. which bits are to be set in the
controlword, can be seen in the 3rd column (x = not relevant).

No. Is carried out if Bit combination (controlword) Action

Bit 3 2 1 0

2 Power stage and
Controller enable +
 Shutdown

 Shutdown x 1 1 0 No action

3 Switch On Switch On x 1 1 1 Switching on the
power stage

4 Enable Operation Enable Operation 1 1 1 1 Control according to
set operating mode

9 Disable Voltage Disable Voltage x x 0 x Power stage will be
disabled. Motor shaft
is freely rotatable.

15 Cause of the error
eliminated +
 Fault Reset

 Fault Reset
Bit 7 =

Error
acknowledgement

EXAMPLE
After the servo drive has been parameterised, the drive should be enabled, i.e. the power
stage should be switched on:

1. The servocontroller is in SWITCH_ON_DISABLED state
2. The controller should be set to the OPERATION_ENABLED state
3. The state transitions 2, 3 and 4 must be executed.
4. From the previous table follows:

Transition controlword New state

2 0006h READY_TO_SWITCH_ON

3 0007h SWITCHED_ON

4 000Fh OPERATION_ENABLE
Remarks:

l To illustrate the principle, no further bits are set in the controlword.
l The transitions 3 and 4 can be combined by writing 000Fh, because the set
bit 3 is not relevant for transition 3.

l In each case, it is necessary to wait until the controller has reached this
state. This is explained in more detail in the following section.

EtherCAT and CANopen manual Page 104 of 191

4 Device Control

4.2.1 State diagram: States
In the following table all states and their meaning are listed:

Name Description

NOT_READY_TO_SWITCH_ON The servo drive performs a self-test. The CAN
communication is not yet working.

SWITCH_ON_DISABLED The servo drive has completed its self-test. CAN
communication is possible.

READY_TO_SWITCH_ON The servo drive waits until the digital inputs "Power
stage enable" and "Controller enable" are connected to
24 V. (Enable logic "Digital input and CAN").

SWITCHED_ON *1) The power stage is switched on.

OPERATION_ENABLE *1) The motor is supplied with voltage and is controlled
according to the current operating mode.

QUICKSTOP_ACTIVE *1) The Quick Stop Function is executed (see: quick_stop_
option_ code). The motor is connected to voltage and
is controlled according to the Quick Stop Function.

FAULT_REACTION_ACTIVE *1) An error has occurred. In the case of critical errors, the
device immediately switches to the status Fault.
Otherwise, the action specified in the fault_reaction_
option_code is executed. The motor is connected to
voltage and is controlled according to the Fault
Reaction Function.

FAULT An error has occurred. The motor is voltage-free.
*1) The power stage is switched on

4.2.2 State diagram: State transitions

 Danger to life due to electric shock!
Power stage disabledmeans that the power semiconductors are no longer driven. If
this state is entered when the motor is rotating, it coasts down unbraked. A mechanical
motor brake, if present, is automatically applied.

The signal does not guarantee that the motor is in fact voltage-free.

 Uncontrolled behaviour
Power stage enabledmeans that the motor is controlled according to the selected
operating mode. A mechanical motor brake, if present, is automatically released.

In the event of a defect or incorrect parameterisation (motor current, number of poles,
resolver offset angle, etc.), the drive may behave in an uncontrolled manner.

The following table lists all state transitions and their meaning:

EtherCAT and CANopen manual Page 105 of 191

4 Device Control

No. Will be executed if Bit combination (controlword) Action

Bit 3 2 1 0

0 Switched on or
reset

Internal transition Perform self-test

1 Self-test succesful Internal transition Activation of CAN
communication

2 Dig. inputs Power
stage enable and
Controller enable
active + Shutdown

 Shutdown x 1 1 0 -

3 Switch On Switch On x 1 1 1 Power stage
switched on

4 Enable Operation Enable Operation 1 1 1 1 Control according to
set operating mode

5 Disable Operation Disable Operation 0 1 1 1 Power stage is
disabled.
Motor shaft is freely
rotatable.

6 Shutdown Shutdown x 1 1 0 Power stage is
disabled.
Motor shaft is freely
rotatable.

7 Quick Stop Quick Stop x 0 1 x -

8 Shutdown Shutdown x 1 1 0 Power stage is
disabled.
Motor shaft is freely
rotatable.

9 Disable Voltage Disable Voltage x x 0 x Power stage is
disabled.
Motor shaft is freely
rotatable.

10 Disable Voltage Disable Voltage x x 0 x Power stage is
disabled.
Motor shaft is freely
rotatable.

11 Quick Stop Quick Stop x 0 1 x Braking according to
quick_stop_ option_
code.

12 Braking finished or
 Disable Voltage

 Disable Voltage x x 0 x Power stage is
disabled.
Motor shaft is freely
rotatable.

EtherCAT and CANopen manual Page 106 of 191

4 Device Control

No. Will be executed if Bit combination (controlword) Action

Bit 3 2 1 0

13 Error occurred Internal transition For non-critical
errors, reaction
according to fault_
reaction_option_
code. For critical
errors, transition 14
follows

14 Error handling is
finished

Internal transition Power stage is
disabled.
Motor shaft is freely
rotatable.

15 Cause of error
eliminated +
Command
 Fault Reset

 Fault Reset
Bit 7 =

Error
acknowledgement
(on rising edge)

EtherCAT and CANopen manual Page 107 of 191

4 Device Control

4.3 controlword

Object 6040h: controlword
The controlword can be used to change the current state of the servo drive or directly
trigger a specific action (e.g. start homing). The function of bits 4, 5, 6 and 8 depends on
the current operating mode (modes_of_operation) of the servo drive, which is explained
after this chapter.

Index 6040h
Name controlword
Info -- rw PDO UINT16

Value -- --

Bit Value Function

0 0001h Control of the state transitions.
(These bits are evaluated together)1 0002h

2 0004h
3 0008h
4 0010h new_set_point / start_homing_operation / enable_ip_mode

5 0020h change_set_immediatly

6 0040h absolute / relative

7 0080h reset_fault

8 0100h halt

9 0200h Reserved, write 0.

10 0400h Reserved, write 0.

11 0800h Reserved, write 0.

12 1000h Reserved, write 0.

13 2000h Reserved, write 0.

14 4000h Reserved, write 0.

15 8000h Reserved, write 0.

EtherCAT and CANopen manual Page 108 of 191

4 Device Control

Description of the commands (Bits 0...3, Bit 7)
As already extensively described, state transitions can be executed with bits 0..3. The
commands required for this are shown here once again in an overview. The Fault Reset
command is generated by a rising edge (from 0 to 1) of bit 7.

Commands: Bit 7 Bit 3 Bit 2 Bit 1 Bit 0

0080h 0008h 0004h 0002h 0001h
 Shutdown x x 1 1 0

 Switch On x x 1 1 1

 Disable Voltage x x x 0 x

 Quick Stop x x 0 1 x

 Disable Operation x 0 1 1 1

 Enable Operation x 1 1 1 1

 Fault Reset x x x x

 State changes
Since some status changes take a certain amount of time, all status changes triggered
by the controlword must be read back via the statusword. Only when the
requested status can also be read in the statusword is it permitted to write another
command into the controlword.

Description of the other bits
The remaining bits of the controlword are explained below. Some of the bits have
different meanings depending on the operation mode (modes_of_operation), i.e.
whether the servo drive is speed- or torque-controlled, for example:

Bit 4 Depends on modes_of_operation:

new_set_point In Profile Position Mode:
A rising edge signals the servocontroller that a new
positioning job should be accepted. See also
section 5.3 Profile Position Mode on page 134.

start_homing_operation In Homing Mode:
A rising edge causes the parameterised homing run to be
started. A falling edge terminates an active homing run.

enable_ip_mode In Interpolated Position Mode:
This bit must be set to enable the interpolation data sets
to be evaluated. It is acknowledged by the bit ip_mode_
active in the statusword. For more information see
section 5.4 Interpolated Position Mode on page 139

EtherCAT and CANopen manual Page 109 of 191

4 Device Control

Bit 5

change_set_immediatly Only in Profile Position Mode:
If this bit is not set, a possibly running positioning job is
processed first and then the new one is started. If this bit
is set, a running positioning is immediately aborted and
replaced by the new positioning job. It is essential that
you also refer to section 5.3 Profile Position Mode on
page 134.

Bit 6

relative Only in Profile Position Mode:
When this bit is set, the servocontroller adds the target
position (target_position) of the current positioning job to
the set position (position_demand_value) of the position
controller.

Bit 7

reset_fault On a rising edge the servocontroller attempts to
acknowledge the existing errors. This is only successful if
the cause of the error has been eliminated.

Bit 8 Depends on modes_of_operation:

halt In Profile Position Mode:
If the bit will be set, the current positioning is aborted.
Braking is done with the profile_deceleration. When the
process is complete, the bit target_reached is set in the
statusword. Clearing the bit has no effect.

halt In Profile Velocity Mode:
When the bit will be set, the speed is reduced to zero.
Braking is done with the profile_deceleration. Clearing
the bit causes the servocontroller to accelerate again.

halt In Profile Torque Mode:
When the bit will be set, the torque is reduced to zero.
This is done with the torque_slope. Clearing the bit
causes the servocontroller to accelerate again.

halt In Homing Mode:
When the bit will be set, the current homing run is
aborted. Clearing the bit has no effect.

EtherCAT and CANopen manual Page 110 of 191

4 Device Control

4.4 Reading the servo drive status
In the same way as various state transitions can be triggered by combining several bits
of the controlword, the status of the servocontroller can be read out by combining
different bits of the statusword. The following table lists the possible states of the state
diagram and the corresponding bit combination with which they are displayed in the
statusword.

State Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 Mask Value

0040h 0020h 0008h 0004h 0002h 0001h
Not_Ready_To_Switch_On 0 x 0 0 0 0 004Fh 0000h
Switch_On_Disabled 1 x 0 0 0 0 004Fh 0040h
Ready_to_Switch_On 0 1 0 0 0 1 006Fh 0021h
Switched_On 0 1 0 0 1 1 006Fh 0023h
Operation_Enable 0 1 0 1 1 1 006Fh 0027h
Quick_Stop_Active 0 0 0 1 1 1 006Fh 0007h
Fault_Reaction_Active 0 x 1 1 1 1 004Fh 000Fh
Fault 0 x 1 1 1 1 004Fh 000Fh
Fault (as per DS402) 1) 0 x 1 0 0 0 004Fh 0008h

 FAULT state not implemented according to DS402
1) In earlier CANopen implementations the FAULT state is not indicated according to
DS 402. To get the state indicated according to DS 402, this must be selected in the
compatibility_control (see section 3.2 Compatibility settings on page 41). For
compatibility to earlier firmware versions, no changes need to be made.

EXAMPLE
The example on page 104 shows which bits must be set in the controlword to enable the
servo drive. In this example, we will explain how the current status of the servo drive is then
read from the statusword.
Transition controlword New state Wait until

2 0006h READY_TO_SWITCH_ON (statusword & 006Fh) = 0021h
3+4 000Fh OPERATION_ENABLE (statusword & 006Fh) = 0027h

Remarks:

l To clarify the principle, no further bits are set in the controlword.

l To determine the controller status unambiguously, even bits that are not set must be
checked in the statusword. The statuswordmust therefore be masked accordingly.

EtherCAT and CANopen manual Page 111 of 191

4 Device Control

4.5 Statuswords

4.5.1 Object 6041h: statusword
Index 6041h
Name statusword
Info -- ro PDO UINT16

Value -- --

Bit Value Name

0 0001h Status of the servo drive, see section 4.4 Reading the servo drive status
on page 111.
These bits must be evaluated together.

1 0002h
2 0004h
3 0008h
5 0020h
6 0040h
4 0010h voltage_enabled

7 0080h warning

8 0100h drive_is_moving

9 0200h remote

10 0400h target_reached

11 0800h internal_limit_active

12 1000h set_point_acknowledge / speed_0 / homing_attained / ip_mode_
active

13 2000h following_error / homing_error

14 4000h manufacturer_statusbit

15 8000h trigger_result

All bits of the statusword are not buffered. They represent the current device status.
In addition to the servo drive status, various events are displayed in the statusword,
whereby each bit is assigned a specific event, such as a following error. The individual
bits have the following meaning:

EtherCAT and CANopen manual Page 112 of 191

4 Device Control

Bit 4

voltage_enabled This bit is set when the power stage transistors are
switched off.

In earlier CANopen implementations, contrary to the
specification in DS 402, bit 4 (voltage_enabled) is returned
inverted. For compatibility reasons, this has been retained.
However, it is possible to select the behaviour according to
DS402 via the object compatibility_control (see section 3.2
Compatibility settings on page 41).

If bit 7 is set in object 6510h_F0h (compatibility_control), the
following applies:
This bit is set if the power stage transistors are switched on.
No changes need to be made for compatibility with earlier
firmware versions.

Bit 5

quick_stop If the bit is cleared, the drive executes a Quick Stop according
to quick_stop_option_code.

Bit 7

warning The meaning of this bit is configurable: It can be set when any
bit in manufacturer_warnings_1 is set. See also section 4.5.5
Object 2001h: manufacturer_warnings on page 118.

Bit 8 manufacturer specific

drive_is_moving This bit is set - independently of the modes_of_operation - if
the actual speed (velocity_ actual_value) of the drive is
outside the associated tolerance window (velocity_threshold).

Bit 9

remote This bit indicates that the power stage of the servocontroller
can be enabled via the CAN network. It is set if the controller
enable logic is set accordingly via the enable_logic object.

EtherCAT and CANopen manual Page 113 of 191

4 Device Control

Bit 10 Depends on modes_of_operation:

target_reached In Profile Position Mode:
This bit is set when the target position is reached and the
actual position (position_ actual_value) is in the
parameterised position window (position_window).
It is also set when the drive comes to a standstill after the
Halt bit has been set.
It is deleted as soon as a new positioning is started.

target_reached In Profile Velocity Mode:
The bit is set when the speed (velocity_actual_value) of the
drive is within the tolerance window (velocity_window,
velocity_ window_time).

Bit 11

internal_limit_
active

This bit indicates that the I²t limitation is active.

Bit 12 Depends on modes_of_operation:

set_point_
acknowledge

In Profile Position Mode:
This bit is set when the servocontroller has recognised the
set bit new_set_point in the controlword. It is cleared again
after the new_set_point bit in the controlword has been set
to zero. For more information see section 5.3
Profile Position Mode on page 134.

speed_0 In Profile Velocity Mode:
This bit is set when the actual speed (velocity_actual_
value) of the drive is within the associated tolerance
window (velocity_threshold).

homing_attained In Homing Mode:
This bit is set if the homing run was completed without
errors.

ip_mode_active In Interpolated Position Mode:
This bit indicates that the interpolation is active and the
interpolation data sets are being evaluated. It is set if this
was requested by the bit enable_ip_mode in the
controlword. For more information see section 5.4
Interpolated Position Mode on page 139.

EtherCAT and CANopen manual Page 114 of 191

4 Device Control

Bit 13 Depends on modes_of_operation:

following_error In Profile Position Mode:
This bit is set if the actual position (position_actual_
value) differs from the target position (position_
demand_value) so much that the difference lies
outside the parameterised tolerance window
(following_error_window, following_error_ time_
out).

homing_error In Homing Mode:
This bit is set if the homing run is interrupted (Halt
bit), both limit switches are activated simultaneously
or the distance already travelled during the limit
switch search is greater than the specified
positioning range (min_position_limit, max_
position_limit).

Bit 14 manufacturer specific

manufacturer_statusbit The meaning of this bit is configurable: It can be set
when any bit of the manufacturer_statusword_1 is
set or reset. See also section 4.5.2Object 2000h:
manufacturer_statuswords on page 115.

Bit 15 manufacturer specific

trigger_result The meaning of this bit is configurable: It is set when
a sample event has occurred and the sample mask
is set accordingly. See also section 3.15 Position
capturing (Sampling) on page 89.

4.5.2 Object 2000h: manufacturer_statuswords
The object group manufacturer_statuswords displays additional manufacturer-specific
states of the servocontroller.

Index 2000h
Name manufacturer_statuswords
Type RECORD 01h

Sub-Index 01h
Name manufacturer_statusword_1
Info -- ro PDO UINT32

Value -- --

Bit Value Name

0 00000001h is_referenced

1 00000002h commutation_valid

2 00000004h ready_for_enable

3 00000008h ipo_in_target

...

8 00000100h safe_standstill

EtherCAT and CANopen manual Page 115 of 191

4 Device Control

Bit 0
is_referenced The bit is set when the servocontroller is referenced. This is

the case if either a homing run has been successfully
performed or no homing run is necessary due to the
connected encoder system (e.g. in the case of an absolute
encoder).

Bit 1
commutation_valid The bit is set if the commutation information is valid. It is

especially helpful for encoder systems without commutation
information (e.g. linear motors), as the automatic
commutation finding can take some time there. If this bit is
monitored a timeout of the control can be prevented when
enabling the servo drive.

Bit 2
ready_for_enab The bit is set when all conditions are present to enable the

servo drive and only the controller enable itself is missing.
The following conditions must be fulfilled:

l The drive is error-free
l The DC link is loaded
l The angle encoder evaluation is ready. No processes
(e.g. serial transmission) are active that prevent an
enable.

l No blocking process is active (e.g. automatic motor
parameter identification)

Bit 3
ipo_in_target The bit is set when the trajectory generator has completed the

positioning. In contrast to target_reached, no additional
check is made whether the actual position also corresponds
to the target position.

Bit 8
safe_standstill The bit is set when the controller has entered the safe state

"Safe Torque Off" (STO). See also the relevant section in the
product manual, e.g. section STO (Safe Torque Off) in the BL
4000-C product manual.

EtherCAT and CANopen manual Page 116 of 191

4 Device Control

With the help of the objects manufacturer_status_masks and manufacturer_status_
invert one or more bits of the manufacturer_statuswords can be mapped into bit 14
(manufacturer_statusbit) of the statusword (6041h). All bits of the manufacturer_
statusword_1 can be inverted via the corresponding bit in manufacturer_status_invert_
1. Thus, bits can also be monitored for the "reset" status. After the inversion the bits are
masked, i.e. only if the corresponding bit in manufacturer_status_mask_1 is set, the bit
is further evaluated. If at least one bit is still set after masking, bit 14 of the statusword is
also set. The following figure illustrates this as an example:

EXAMPLE
Bit 14 of the statusword should be set if the drive is referenced:
Object Value

manufacturer_status_invert_1 0x00000000 Invert no bit

manufacturer_status_mask_1 0x00000001 Show bit 0

Bit 14 of the statusword should be set if the drive has no valid commutation position:
Object Value

manufacturer_status_invert_1 0x00000002 Invert bit 1

manufacturer_status_mask_1 0x00000002 Show bit 1

Bit 14 of the statusword should be set if the drive is not ready for enable OR referenced:
Object Value

manufacturer_status_invert_1 0x00000004 Invert bit 2

manufacturer_status_mask_1 0x00000005 Show bit 0 and bit 2

EtherCAT and CANopen manual Page 117 of 191

4 Device Control

4.5.3 Object 2005h: manufacturer_status_masks
This object group is used to specify which set bits of the manufacturer_statuswords are
mapped into the statusword.

Index 2005h
Name manufacturer_status_masks
Type RECORD 01h

Sub-Index 01h
Name manufacturer_status_mask_1
Info -- rw PDO UINT32

Value -- 0

4.5.4 Object 200Ah: manufacturer_status_invert
This object group determines which bits of the manufacturer_statuswords are inverted
before masking.

Index 200Ah
Name manufacturer_status_invert
Type RECORD 01h

Sub-Index 01h
Name manufacturer_status_invert_1
Info -- rw PDO UINT32

Value -- 0

4.5.5 Object 2001h: manufacturer_warnings
The manufacturer-specific object group manufacturer_warnings shows further states of
the servo drive.

Index 2001h
Name manufacturer_warnings
Type RECORD 01h

Sub-Index 01h
Name manufacturer_warnings_1
Info -- ro PDO UINT32

Value -- --

Bit Value Name

0 00000001h l_lim_switch_lock

1 00000002h r_lim_switch_lock

2 00000004h warning_active

EtherCAT and CANopen manual Page 118 of 191

4 Device Control

Bit 0

l_lim_switch_lock This bit indicates that the direction is locked because the left
limit switch has been triggered. The setpoint lock is reset
when an error acknowledgement is performed (See
controlword, fault_reset).

Bit 1

r_lim_switch_lock This bit indicates that the direction is locked because the right
limit switch has been triggered. The setpoint lock is reset
when an error acknowledgement is performed (See
controlword, fault_reset).

Bit 2

warning_active This bit indicates that a warning is active in the servo drive,
see the corresponding section in the product manual, e.g.
section Fault messages in the BL 4000 Product manual.

With the help of the manufacturer_warning_masks object, one or more bits of the
manufacturer_warnings can be mapped into bit 7 (warning) of the statusword (6041h).
Only if the corresponding bit in manufacturer_warning_mask_1 is set, the bit is further
evaluated. If at least one bit is still set after masking, bit 7 of the statusword is also set.

4.5.6 Object 2006h: manufacturer_warning_masks
This object group determines which set bits of the manufacturer_warnings object are
mapped into the statusword.

Index 2006h
Name manufacturer_warning_masks
Type RECORD 01h

Sub-Index 01h
Name manufacturer_warning_mask_1
Info -- rw PDO UINT32

Value -- 0

EtherCAT and CANopen manual Page 119 of 191

4 Device Control

4.6 Description of further objects

4.6.1 Object 605Bh: shutdown_option_code
The shutdown_option_code is used to specify how the servocontroller behaves during
state transition 8 (from OPERATION_ENABLE to READY_TO_SWITCH_ON). The object
indicates the unchangeable behavior of the servocontroller.

Index 605Bh
Name shutdown_option_code
Info -- rw INT16

Value 0 --

Value Name

0 Output stage will be switched off, motor can rotate freely

4.6.2 Object 605Ch: disable_operation_option_code
The disable_operation_option_code object is used to specify how the servocontroller
behaves during state transition 5 (from OPERATION_ENABLE to SWITCHED_ON). The
object indicates the unchangeable behavior of the servocontroller.

Index 605Ch
Name disable_operation_option_code
Info -- rw INT16

Value -1 --

Value Name

-1 Decelerate with quickstop_deceleration

4.6.3 Object 605Ah: quick_stop_option_code
The Parameter quick_stop_option_code is used to specify how the servocontroller
behaves in the event of a Quick Stop . The object indicates the unchangeable behavior
of the servocontroller.

Index 605Ah
Name quick_stop_option_code
Info -- rw INT16

Value 2 --

Value Name

2 Decelerate with quickstop_deceleration

EtherCAT and CANopen manual Page 120 of 191

4 Device Control

4.6.4 Object 605Eh: fault_reaction_option_code
The fault_reaction_option_code object is used to specify how the servo drive behaves in
the event of a fault. Since the error reaction depends on the respective error, this object
cannot be parameterised and always returns 0. To change the error reaction of the
individual errors see section 3.18 Error management on page 100.

Index 605Eh
Name fault_reaction_option_code
Info -- rw INT16

Value 0 --

EtherCAT and CANopen manual Page 121 of 191

5 Operating modes

5 Operating modes

5.1 Setting the operating mode

5.1.1 Overview
The servocontroller can be set to a variety of operating modes. Only a few are specified
in detail under CANopen:

l torque-controlled operation (profile torque mode)
l speed-controlled operation (profile velocity mode)
l homing mode
l positioning mode (profile position mode)
l synchronous position mode (CANopen: interpolated position mode, Ethercat:
cyclic synchronous position mode)

5.1.2 Description of objects

5.1.2.1 Object 6060h: modes_of_operation
The modes_of_operation object is used to set the operating mode of the servocontroller.

Index 6060h
Name modes_of_operation
Info -- rw PDO INT8

Value 1, 3, 4, 6, 7, 8 --

Value Action

1 Profile Position Mode (Position control with positioning mode)

3 Profile Velocity Mode (Speed control with setpoint ramp)

4 Profile Torque Mode (Torque control with setpoint ramp)

6 Homing Mode (Reference run)

7 Interpolated Position Mode

8 Cyclic Synchronous Position Mode

 Current operating mode
The current operating mode can only be read from the object modes_of_operation_
display. Since changing the operating mode can take some time, you must wait until
the newly selected mode appears in the object modes_of_operation_display.

EtherCAT and CANopen manual Page 122 of 191

5 Operating modes

5.1.2.2 Object 6061h: modes_of_operation_display
The current operating mode of the servocontroller can be read with object modes_of_
operation_display.

Index 6061h
Name modes_of_operation_display
Info -- ro PDO INT8

Value -14, -13, -11, -1, 1, 3, 4, 6, 7, 8 --

If an operating mode is set via object 6060h, in addition to setting the actual operating
mode, the setpoint selector is also modified as follows to ensure operation of the
servocontroller under CANopen:

Selector Profile Velocity Mode Profile Torque Mode

A Speed setpoint (Fieldbus 1) Torque setpoint (Fieldbus 1)

B Torque limitation, if applicable inactive

C Speed setpoint
(synchronous speed)

inactive

In addition, the setpoint ramp will always be switched on. Only if these settings are made
in the mentioned way, one of the CANopen operating modes is displayed. If these
settings are changed e.g. with the MPC ServoCommander , the appropriate "User"
mode is displayed to indicate that the selectors have been changed.

Value Mode

-1 Unknown operating mode / operating mode change

-11 User Position Mode

-13 User Velocity Mode

-14 User Torque Mode

1 Profile Position Mode

3 Profile Velocity Mode

4 Torque Profile Mode

6 Homing Mode

7 Interpolated Position Mode

8 Cyclic Synchronous Position Mode

 Setting the operating mode
The operating mode can only be set via object modes_of_operation. Since changing
the operating mode can take some time, you have to wait until the newly selected
mode appears in object modes_of_operation_display. During this period, "invalid
operating mode" (-1) may be displayed briefly.

EtherCAT and CANopen manual Page 123 of 191

5 Operating modes

5.2 Homing Mode

5.2.1 Overview
This chapter describes how the servo drive searches for the initial position (also called
reference point or zero point). There are different methods to determine this position,
either the limit switches at the end of the positioning range can be used or a reference
switch (zero point switch) within the possible positioning range. In order to achieve the
greatest possible reproducibility, the zero pulse of the angle encoder used (resolver,
incremental encoder, etc.) can be included in some methods.

Figure 10: Homing

The user can determine the speed, acceleration and type of homing. The home_offset
object can be used to move the zero position of the servo drive to any position. There
are two homing speeds. The higher search speed (speed_during_search_for_switch) is
used to find the limit switch or the reference switch. In order to subsequently be able to
determine the position of the relevant switching edge exactly, the crawling speed
(speed_during_search_for_zero) will be used. The maximum distance searched for
switches is calculated from the difference of objects 607Dh_01h und 607Dh_02h (see
section 3.7.2.14Object 607Dh: software_position_limit on page 70). If no switch is found
within this distance, error 11-6 (Homing: end of search distance reached) is triggered.

 Homing behaviour can be parameterised
The following homing behaviour can be modified:

l If the reference run is started via the controlword, the servo drive does not
necessarily move to the zero position after the reference run. If the servo drive
knows all the required values (e.g. because it already knows the position of the
zero pulse), no physical movement is carried out.

l The maximum search distance is determined by object 607Dh.

If bit 6 of the object 6510h_F0h (compatibility_control) is set, the settings defined in the
MPC ServoCommander are used instead (siehe section 3.2 Compatibility settings on
page 41).

If the drive should not be referenced, but only the position should be set to a certain
value, object 2030h (set_position_absolute) can be used. For this see section 3.7.2.13
Object 2030h: set_position_absolute on page 69.

EtherCAT and CANopen manual Page 124 of 191

5 Operating modes

5.2.2 Description of objects

5.2.2.1 Important objects in other sections
Index Name Section Page

6040h controlword Device Control 102

6041h statusword

5.2.2.2 Object 607Ch: home_offset
The home_offset object specifies the offset of the zero position with respect to the
determined reference position. The effect of this object can be customised. See also
section section 3.2.2.1Object 6510h_F0h: compatibility_control on page 41.

Index 607Ch
Name home_offset
Info position_unit rw PDO INT32

Value -- --

5.2.2.3 Object 6098h: homing_method
A number of different methods are provided for a homing run. The variant required for
the application can be selected via the homing_method object. There are four possible
homing signals: the negative and positive limit switches, the reference switch and the
(periodic) zero pulse of the angle encoder.
In addition, the servo drive can reference to the negative or positive stop without any
additional signal at all. If a method for referencing is set via the object homing_method,
the following settings are determined with this:

l The reference source (neg./pos. limit switch, the reference switch, neg. / pos.
stop).

l The direction and the sequence of the homing
l The method of evaluation of the zero pulse from the used angle encoder

Index 6098h
Name homing_method
Info -- rw PDO INT8

Value -18, -17, -2, -1, 1, 2, 7, 11, 17, 18,
23, 27, 32, 33, 34, 35 --

EtherCAT and CANopen manual Page 125 of 191

5 Operating modes

Direction Target Reference point for zero DS402

-18 positive Stop Stop -18

-17 negative Stop Stop -17

-2 positive Stop Zero pulse -2

-1 negative Stop Zero pulse -1

1 negative Limit switch Zero pulse 1

2 positive Limit switch Zero pulse 2

7 positive Reference switch Zero pulse 7

11 negative Reference switch Zero pulse 11

17 negative Limit switch Limit switch 17

18 positive Limit switch Limit switch 18

23 positive Reference switch Reference switch 23

27 negative Reference switch Reference switch 27

32 negative Zero pulse Zero pulse 33
33 positive Zero pulse Zero pulse 34
34 No movement Current actual position 35

 Homing methods not assigned according to DS402
In previous CANopen implementations the homing methods 32, 33, 34 and 35 are not
assigned according to DS402. Therefore, it is possible to select the assignment
according to DS402 via object compatibility_control (siehe section 3.2 Compatibility
settings on page 41). In this case, the method numbers in the column "DS402" must be
used.

For compatibility with previous versions, no changes need to be made and the
previous numbers can be used.

The homing_method can only be changed if homing is not active. Otherwise the error
message 08 00 00 22h is returned.The sequence of the individual methods is explained
in detail in section 5.2.3 Homing sequences on page 128.

5.2.2.4 Object 6099h: homing_speeds
This object determines the speeds used during homing.

Index 6099h
Name homing_speeds
Type ARRAY 02h

Sub-Index 01h
Name speed_during_search_for_switch
Info speed_unit rw PDO UINT32

Value -- --

EtherCAT and CANopen manual Page 126 of 191

5 Operating modes

Sub-Index 02h
Name speed_during_search_for_zero
Info speed_unit rw PDO UINT32

Value -- --

 Setting bit 6 in the object compatibility_control
If bit 6 in object compatibility_control, (siehe section 3.2 Compatibility settings on page
41) is set, a movement to zero can be carried out after the homing, for example.

If this bit is set and object speed_during_search_for_switch is written, the speed for
searching the switch as well as the speed for moving to zero are written together.

5.2.2.5 Object 609Ah: homing_acceleration
This object specifies the acceleration used for all acceleration and deceleration
processes during the homing run.

Index 609Ah
Name homing_acceleration
Info acceleration_unit rw PDO UINT32

Value -- --

5.2.2.6 Object 2045h: homing_timeout
The homing run can be monitored for its maximum execution time. For this purpose, the
maximum execution time can be specified with the homing_timeout object. If this time is
exceeded without the homing run being completed, error 11-3 is triggered. If 0 is written
to the object, monitoring is deactivated.

Index 2045h
Name homing_timeout
Info ms rw UINT16

Value 0, 1 … 65535 --

EtherCAT and CANopen manual Page 127 of 191

5 Operating modes

5.2.3 Homing sequences

5.2.3.1 Methods -17 and -18: Stop
If this method is used, the drive moves in the positive direction (-18) or negative direction
(-17) until it reaches the stop. Normally, a 50% increase of the i²t value is used as the
criterion for detecting the stop. Alternatively, a comparison torque value at which the
stop will be considered as detected can be specified (see section Tab: Torques in the
respective product manual). The mechanical design of the stop must be such that it
cannot be damaged with the parameterised maximum current. The home position refers
directly to the stop. Since, in this case, the home position would be located directly at the
stop, the parameter Offset start position should be used to shift the home position in a
suitable manner.

Figure 11: Homing run to the stop

Figure 12: Use of "Offset start position"

5.2.3.2 Methods -1 and -2: stop with index pulse evaluation
These methods correspond to the methods -17 and -18. However, the home position
also refers to the first index pulse of the angle encoder in the negative (-2) or positive (-1)
direction as seen from the stop.

Figure 13: Homing run to the stop with index pulse evaluation

EtherCAT and CANopen manual Page 128 of 191

5 Operating modes

5.2.3.3 Methods 17 and 18: positive and negative limit switch
If these methods are used, the drive moves in the positive direction (18) or negative
direction (17) at search speed until it reaches the limit switch. Then, the drive moves
back at crawl speed and tries to find the exact position of the limit switch. The home
position refers to the falling edge of the limit switch.

Figure 14: Homing run to the limit switch

5.2.3.4 Methods 1 and 2: positive and negative limit switch with index
pulse evaluation
Like in the case of the previous method, the system tries to find the limit switch.
However, in this case, the home position refers to the first index pulse of the angle
encoder in the negative (1) or positive (2) direction as seen from the limit switch.

Figure 15: Homing run to the limit switch with index pulse evaluation

EtherCAT and CANopen manual Page 129 of 191

5 Operating modes

5.2.3.5 Methods 23 and 27: reference switch
These two methods use a reference switch which is active only over a certain part of the
distance. This method is particularly suitable for rotary axis applications in which the
reference switch is activated once during every rotation. If this method is used, the drive
moves in the positive direction (23) or negative direction (27) at search speed until it
reaches the reference switch. Then, the drive moves back at crawl speed and tries to
find the exact position of the reference switch. The home position refers to the falling
edge of the reference switch. If, at the beginning, the drive moves away from the
reference switch, the associated limit switch causes a reversal of the direction of rotation
so that the reference switch will be found.

Figure 16: Homing run to the reference switch

EtherCAT and CANopen manual Page 130 of 191

5 Operating modes

5.2.3.6 Methods 7 and 11: reference switch and index pulse
evaluation
Like methods 23 and 27, methods 7 and 11 use the reference switch. In addition,
however, the home position refers to the first index pulse in the negative or positive
direction as seen from the reference switch.

Figure 17: Homing run to the reference switch with index pulse evaluation

EtherCAT and CANopen manual Page 131 of 191

5 Operating modes

5.2.3.7 Methods -23 and -27: homing run (positive/negative) to the
reference switch
These methods are similar to the methods 23 and 27. However, in this case, the system
tries to locate the end of the range of movement, e.g. the stop or a limit switch, in a first
step. It is only then that the system searches for the reference switch. As a result,
several switches can be connected to the same input for the reference switch. During
the homing run, the "last" switch in the search direction will be used as the reference
switch. In the case of method -23, the drive moves in the positive direction first, and in
the case of method -27, it moves in the negative direction first. The home position refers
to the falling edge of the reference switch.

Figure 18: Reference switch with an initial movement in the positive and negative
direction

5.2.3.8 Methods 32 and 33: homing to the index pulse
In the case of method 32 and method 33, the direction of the homing run is negative or
positive. The home position refers to the first index pulse of the angle encoder in the
search direction.

Figure 19: Index pulse with a negative (32) and positive (33) initial movement

5.2.3.9 Method 34: homing to the current position
In the case of method 34, the home position refers to the current position, i.e. the current
position of the drive is set to zero.

EtherCAT and CANopen manual Page 132 of 191

5 Operating modes

5.2.4 Homing control
The reference run is controlled and monitored by the controlword / statusword. Starting
is done by setting bit 4 in the controlword.

Bit 4 Description

0 Homing is not active

0 ► 1 Start homing

1 Homing is active

1 ◄ 0 Interrupt homing

Successful completion of the homing is indicated by a set bit 12 in the statusword A set
bit 13 in the statusword indicates that an error occurred during the reference run. The
cause of the error can be determined via the error_register and pre_defined_error_field
objects.

Bit 13 Bit 12 Description

0 0 Reference run is not yet ready

0 1 Reference run carried out successfully

1 0 Reference run not carried out successfully

1 1 Illegal state

EtherCAT and CANopen manual Page 133 of 191

5 Operating modes

5.3 Profile Position Mode

5.3.1 Overview
The structure of this operating mode can be seen in Figure 20: Trajectory generator and
position controller:
The target_position is transferred to the trajectory generator. This generates a position
setpoint (position_demand_value) for the position controller, which is described in the
Position Controller section (see section 3.7 Position Controller on page 63). These two
function blocks can be set independently of each other.

Figure 20: Trajectory generator and position controller

5.3.2 Functional description
There are two ways to transfer a target position to the servo drive:

Single driving task
When the servo drive has reached a target position, it signals this to the host with the
target_reached bit (bit 10 in the statusword object). In this operating mode, the servo
drive stops when it has reached the target.

Sequence of driving tasks
After the servo drive has reached a target, it immediately starts moving to the next
target. This transition can be carried out smoothly without the servo drive coming to a
standstill in between.
These two methods are controlled by the new_set_point and change_set_
immediatly bits in the controlword object and set_point_acknowledge in the
statusword object. These bits are in a question-answer relationship to each other. This
makes it possible to prepare one motion task while another is still running.

EtherCAT and CANopen manual Page 134 of 191

5 Operating modes

Figure 21: Driving task transfer from a host

The figure above shows how the host and the servo drive communicate with each other
via the CAN bus:
First, the positioning data (target position, profile velocity, end velocity and the
acceleration) are transmitted to the servo drive. When the positioning data set is
completely written (1), the host can start the positioning by setting the bit new_set_
point in the controlword to "1" (2). After the servo drive has recognised the new data
and accepted it into its buffer, it reports this to the host by setting the bit set_point_
acknowledge in the statusword (3).
The host can then start writing a new positioning data set into the servo drive (4) and
clear the new_set_point bit again (5). Only when the servo drive can accept a new
motion task (6), it signals this by a "0" in the set_point_acknowledge bit. Before that,
no new positioning may be started by the host (7).
On the left side of the following figure, a new positioning is started only after the previous
one has been completed. The host evaluates the target_reached bit in the statusword
object for this purpose.

Figure 22: Single driving task (left) and sequence of driving tasks (right)

On the right side, a new positioning is already started while the previous one is still being
processed. The host transfers the subsequent target to the servo drive as soon as it
signals that it has read the buffer and started the associated positioning by clearing the
set_point_acknowledge bit. In this way, the positioning operations are linked together
seamlessly. To prevent the servo drive from briefly decelerating to zero each time
between the individual positionings, the object end_velocityshould be written with the
same value as the object profile_velocity for this operating mode.
If the bit change_set_immediately is set to "1" in the controlword in addition to the bit
new_set_point, the host thereby instructs the servo drive to start the new motion task
immediately. A motion task that is already being processed is canceled in this case.

EtherCAT and CANopen manual Page 135 of 191

5 Operating modes

5.3.3 Description of objects

5.3.3.1 Important objects in other sections
Index Name Section Page

6040h controlword 4 Device Control 102

6041h statusword

605Ah quick_stop_option_
code

607Eh polarity 3.3 Factor Group 43

6093h position_factor

6094h velocity_encoder_
factor

6097h acceleration_factor

5.3.3.2 Object 607Ah: target_position
The object target_position determines to which position the servo drive should move.
The current setting of the speed, acceleration, deceleration and the type of motion
profile (motion_profile_type) must be taken into account. The target position (target_
position) is interpreted either as an absolute or relative value (controlword, Bit 6).

Index 607Ah
Name target_position
Info position_unit rw PDO INT32

Value -- --

5.3.3.3 Object 6081h: profile_velocity
The profile_velocity object specifies the velocity that is normally reached during a
positioning at the end of the acceleration ramp. The profile_velocity object is specified in
speed_unit.

Index 6081h
Name profile_velocity
Info speed_unit rw PDO UINT32

Value -- --

EtherCAT and CANopen manual Page 136 of 191

5 Operating modes

5.3.3.4 Object 6082h: end_velocity
The end_velocity object defines the velocity that the drive must have when it reaches the
target_position. Normally this object is to be set to zero so that the servo drive stops
when it reaches the target position. For gapless positioning, a velocity other than zero
can be specified. The end_velocity object is specified in the same unit as the profile_
velocity object.

Index 6082h
Name end_velocity
Info speed_unit rw PDO UINT32

Value -- --

5.3.3.5 Object 6083h: profile_acceleration
The profile_acceleration object specifies the acceleration used to accelerate to the
setpoint. It is specified in user-defined unit (acceleration_unit).

Index 6083h
Name profile_acceleration
Info acceleration_unit rw PDO UINT32

Value -- --

5.3.3.6 Object 6084h: profile_deceleration
The profile_deceleration object specifies the acceleration with which braking is
performed. It is specified in user-defined unit (acceleration_unit).

Index 6084h
Name profile_deceleration
Info acceleration_unit rw PDO UINT32

Value -- --

5.3.3.7 Object 6085h: quick_stop_deceleration
The quick_stop_deceleration object specifies the deceleration with which the motor
stops when a quick stop is executed (see section 4.2.2 State diagram: State transitions
on page 105). The quick_stop_deceleration object is specified in the same unit as the
profile_deceleration object.

Index 6085h
Name quick_stop_deceleration
Info acceleration_unit rw PDO UINT32

Value -- --

EtherCAT and CANopen manual Page 137 of 191

5 Operating modes

5.3.3.8 Object 6086h: motion_profile_type
The motion_profile_type object is used to select the type of positioning profile.

Index 6086h
Name motion_profile_type
Info -- rw PDO INT16

Value 0, 2 --

Value Profile

0 Linear profile

2 Jerkfree profile

EtherCAT and CANopen manual Page 138 of 191

5 Operating modes

5.4 Interpolated Position Mode

5.4.1 Overview
In Interpolated Position Mode (IP), the servo drive follows cyclical position setpoints, e.g.
in a multi-axis application of the servo drive. For this purpose, synchronization telegrams
(SYNC) and position setpoints are given by a superordinate control in a fixed time grid
(synchronization interval, tP). Since the interval is usually greater than one position
control cycle (tX), the servo drive interpolates the data values between two specified
position values, as outlined in the following graphic.

Figure 23: Linear interpolation between two data values

In the following, the objects required for the Interpolated Position Mode are described
first. In a subsequent functional description, the activation and the sequence of the
parameterization are dealt with comprehensively.

5.4.2 Functional description
Before the servo drive can be switched to Interpolated Position Mode, various settings
must be made: These include the setting of the interpolation interval (interpolation_
time_period), i.e. the time between two SYNC telegrams, the interpolation type
(interpolation_submode_select) and the type of synchronization (interpolation_sync_
definition). In addition, access to the position buffer must be enabled via the object
buffer_clear. To change the interpolation interval (cycle time), the parameter set must be
saved once and the servo drive restarted. Whether the correct interval is set can be read
out via the object synchronous_window_length (1006h). If the correct interval is already
set, the first four steps in the following example can be omitted.

EtherCAT and CANopen manual Page 139 of 191

5 Operating modes

EXAMPLE
The example shows which steps are necessary to prepare the servo drive for interpolation
operation:
Task Action

Set time unit (1/10 ms) 60C2h_02h (interpolation_time_index) = -4

Set time interval (2 ms) 60C2h_01h (interpolation_time_units) = 20

Save parameters 1010h_01h (save_all_parameters) = 65766173h
Execute reset see section 6.6 Network Management (NMT service)

Wait for reboot see section 6.7 Bootup

Set type of interpolation 60C0h (interpolation_submode_select) = -2

Release buffer 60C4h_06h (buffer_clear) = 1

Start sending SYNCmessages see section 6.5 SYNCmessage

The further steps are described in the following sections.

The Interpolated Position Mode is activated via the object modes_of_operation (6060h).
From this point on, the servo drive attempts to synchronise itself to the external time
grid, which is specified by the SYNC telegrams. If the servo drive was able to
synchronise successfully, it reports the Interpolated Position Mode in the object modes_
of_operation_display (6061h). During synchronization, the servo drive returns "Invalid
operation mode". If the SYNC telegrams are not sent in the correct interval after the
synchronization has been completed, the servo drive reports "Invalid operating mode"
again.
If the change of the operating mode is completed, the transmission of position data to
the drive can start. For this purpose, the superordinate control first reads the current
actual position from the servo drive and writes it cyclically as the new setpoint
(interpolation_data_record) to the servo drive. The handshake bits of the controlword
and the statusword are used to activate the acceptance of the data by the servo drive.
By setting the bit enable_ip_mode in the controlword the host indicates that the
evaluation of the position data is to be started. The data sets are not evaluated until the
servo drive acknowledges this via the ip_mode_active status bit in the statusword. In
detail therefore the following sequence results:

EtherCAT and CANopen manual Page 140 of 191

5 Operating modes

Figure 24: Start of synchronization and data enabling

EXAMPLE
The example shows which steps are necessary to start the interpolation:
Taks Action

Send SYNCmessages see 6.5
Request operating mode 6060h (modes_of_operation) = 7

Wait until operating mode is accepted 6061h (modes_of_operation_display) = 7

Read current actual position 6064h (position_actual_value)
Set read actual position as setpoint 60C1h_01h (ip_data_position)
Enable interpolation 6040h (controlword), set enable_ip_mode
Wait for acknowledgement by servo
drive

6041h (statusword), query ip_mode_active

Move interpolated

After completion of the synchronous movement, further evaluation of position values
can be prevented by clearing the enable_ip_mode bit. If necessary, you can then switch
to another operating mode.
If a running interpolation (ip_mode_active set) is interrupted by the occurrence of a
servo drive error, the drive initially behaves as specified for the respective error (e.g.
disabling the servo drive and change to SWICTH_ON_DISABLED state). Interpolation can
then only be continued by resynchronization, since the servo drive must be returned to
the OPERATION_ENABLE state, which clears the ip_mode_active bit.

EtherCAT and CANopen manual Page 141 of 191

5 Operating modes

5.4.3 Description of objects

5.4.3.1 Important objects in other sections
Index Name Section Page

6040h controlword 4 Device Control 102

6041h statusword

6093h position_factor 3.3 Factor Group 43

6094h velocity_encoder_factor

6097h acceleration_factor

5.4.3.2 Object 60C0h: interpolation_submode_select
The type of interpolation is defined via the interpolation_submode_select object.
Currently, only the manufacturer-specific variant "Linear interpolation without buffer" is
available.

Index 60C0h
Name interpolation_submode_select
Info -- rw PDO INT16

Value -2 --

Value Type of interpolation

-2 Linear interpolation without buffer

EtherCAT and CANopen manual Page 142 of 191

5 Operating modes

5.4.3.3 Object 60C1h: interpolation_data_record
The interpolation_data_record object represents the actual data set. It consists of an
entry for the position value (ip_data_position) and a control word (ip_data_controlword),
which specifies whether the position value is to be interpreted absolutely or relatively.
The control word can be provided optionally. If it is not provided, the position value is
interpreted as absolute. If the control word is also to be specified, subindex 2 (ip_data_
controlword) must be written first and then subindex 1 (ip_data_position) for reasons of
data consistency, since internally the data transfer is triggered with write access to
ip_data_position.

Index 60C1h
Name interpolation_data_record
Type RECORD 02h

Sub-Index 01h
Name ip_data_position
Info position_unit rw PDO INT32

Value -- --

Sub-Index 02h
Name ip_data_controlword
Info -- rw PDO UINT8

Value 0, 1 0

Value ip_data_position is

0 Absolute

1 Relative

 Internal data transfer
The internal data transfer takes place with write access to sub-index 1. If sub-index 2 is
also to be used, it must be written before sub-index 1.

5.4.3.4 Object 60C2h: interpolation_time_period
The synchronisation interval can be set via the interpolation_time_period object. The
unit (ms or 1/10 ms) of the interval is defined via ip_time_unit and then set via ip_time_
index. In Interpolated Position Mode the entire controller cascade (current, speed and
position controller) is synchronised to the external clock. The change of the
synchronisation interval therefore only becomes effective after a reset. If the
interpolation interval is to be changed via the CAN bus, the parameter set must be saved
(see section 3.1 Loading and saving parameter sets on page 38) and a reset must be
executed (see section 6.6 Network Management (NMT service) on page 177) so that the
new synchronisation interval takes effect.The synchronisation interval must be met
exactly.

EtherCAT and CANopen manual Page 143 of 191

5 Operating modes

Index 60C2h
Name interpolation_time_period
Type RECORD 02h

Sub-Index 01h
Name ip_time_units
Info according to ip_time_index rw PDO UINT8

Value ip_time_index = -3: 1, 2,..., 10
ip_time_index = -4: 10, 20,..., 100 --

Sub-Index 02h
Name ip_time_index
Info -- rw PDO INT8

Value -3, -4 --

Value ip_time_index is given in

-3 10-3 seconds (ms)

-4 10-4 seconds (0.1 ms)

 Changing the synchronisation interval
Changing the interpolation cycle time only takes effect after a reset. If the interpolation
cycle time is to be changed via the CAN bus, the parameter set must be saved and a
reset must be executed.

5.4.3.5 Object 60C3h: interpolation_sync_definition
Via the object interpolation_sync_definition the type (synchronize_on_group) and the
number (ip_sync_every_n_event) of synchronisation telegrams per synchronisation
interval is specified. Only the standard SYNC telegram and 1 SYNC per interval can be
set.

Index 60C3h
Name interpolation_sync_definition
Type ARRAY 02h

Sub-Index 01h
Name syncronize_on_group
Info -- rw PDO UINT8

Value 0 0

Value Description

0 Use standard SYNC telegram

EtherCAT and CANopen manual Page 144 of 191

5 Operating modes

Sub-Index 02h
Name ip_sync_every_n_event
Info -- rw PDO UINT8

Value 1 1

5.4.3.6 Object 60C4h: interpolation_data_configuration
The object record interpolation_data_configuration is intended for the configuration of
an intermediate buffer. With the only available interpolation type "Linear interpolation
without buffer" most entries have no meaning. However, even with this type of
interpolation, access to object 60C1hmust be enabled via object buffer_clear!

Index 60C4h
Name interpolation_data_configuration
Type RECORD 06h

Sub-Index 01h
Name max_buffer_size
Info -- ro UINT32

Value 0 0

Sub-Index 02h
Name actual_size
Info -- rw PDO UINT32

Value 0 0

Sub-Index 03h
Name buffer_organisation
Info -- rw PDO UINT8

Value 0 0

Value Description

0 FIFO

Sub-Index 04h
Name buffer_position
Info -- rw PDO UINT16

Value 0 0

Sub-Index 05h
Name size_of_data_record
Info -- wo PDO UINT8

Value 2 2

EtherCAT and CANopen manual Page 145 of 191

5 Operating modes

Sub-Index 06h
Name buffer_clear
Info -- wo PDO UINT8

Value 0, 1 0

Value Description

0 Delete Buffer / Access to 60C1h not allowed

1 Access to 60C1h released

5.4.3.7 Object 1006h: communication_cycle_period
The set interpolation interval (=bus cycle time) can be read out via object 1006h
(communication_cycle_period). It is equal to the time tP described in the section Control
circuit cycle times in the Product manual BL 4000.

Index 1006h
Name communication_cycle_period
Info µs rw UINT32

Value -- 00000000h

EtherCAT and CANopen manual Page 146 of 191

5 Operating modes

5.5 Cyclic Synchronous Position Mode

5.5.1 Overview
Just as in Interpolated Position Mode (IP), in Cyclic Synchronous Position Mode (CSP)
the servo drive follows cyclic position setpoints in a multi-axis application of the servo
drive.
The main differences are:

l The setpoint is specified via the target_position (607Ah)
l The setpoints are evaluated directly after changing to Cyclic Synchronous
Position Mode. It is not necessary to set the bit enable_ip_mode in the
controlword and also the object buffer_clear (60C4h_06h) must not be written.

5.5.2 Description of objects

5.5.2.1 Important objects in other sections
Index Name Section Page

607Ah target_position 5.3.3.2 Object 607Ah: target_position 136

60C2h interpolation_time_
period

5.4 Interpolated Position Mode 102

6040h controlword 4 Device Control 102

6041h statusword

6093h position_factor 3.3 Factor Group 43

6094h velocity_encoder_
factor

6097h acceleration_factor
The Cyclic Synchronous Position Mode does not define its own objects.

EtherCAT and CANopen manual Page 147 of 191

5 Operating modes

5.6 Profile Velocity Mode

5.6.1 Overview
The speed-controlled mode (Profile Velocity Mode) includes the following sub-functions:

l Setpoint generation by the ramp generator
l Speed control with suitable input and output signals
l Limitation of the torque setpoint (torque_demand_value)
l Monitoring of the actual velocity (velocity_actual_value) with the window
function/threshold

The meaning of the following parameters is described in section 5.3
Profile Position Mode on page 134: profile_acceleration, profile_deceleration, quick_
stop_deceleration.

EtherCAT and CANopen manual Page 148 of 191

5 Operating modes

Figure 25: Structure of speed-controlled operation (Profile Velocity Mode)

5.6.2 Description of objects

5.6.2.1 Important objects in other sections
Index Name Sections Page

6040h controlword 4 Device Control 102

6041h statusword

6064h position_actual_value 3.7 Position Controller 63

6071h target_torque 5.7 Profile Torque Mode
1566072h max_torque_value

6083h profile_acceleration 5.3 Profile Position Mode 134

6084h profile_deceleration

6085h quick_stop_deceleration

6094h velocity_encoder_factor

EtherCAT and CANopen manual Page 149 of 191

5 Operating modes

5.6.2.2 Object 6069h: velocity_sensor_actual_value
With the object velocity_sensor_actual_value the value of a possible velocity encoder
can be read out in internal units. No separate speed sensor can be connected to
BL 4000 servo drives. Therefore, object 606Ch should always be used to determine the
actual speed value.

Index 6069h
Name velocity_sensor_actual_value
Info rev / 4096 min ro PDO INT32

Value -- --

5.6.2.3 Object 606Ah: sensor_selection_code
The speed sensor can be selected with this object. Currently, no separate speed sensor
is provided. Therefore, only the standard angle encoder can be selected.

Index 606Ah
Name sensor_selection_code
Info -- rw PDO INT16

Value 0 0

5.6.2.4 Object 606Bh: velocity_demand_value
This object can be used to read out the current speed setpoint of the speed controller,
which is generated by the ramp generator or the trajectory generator. If the position
controller is activated, its correction speed is also added.

Index 606Bh
Name velocity_demand_value
Info speed_unit ro PDO INT32

Value -- --

5.6.2.5 Object 202Eh: velocity_demand_sync_value
The setpoint speed of the synchronisation encoder can be read out via this object. This
is defined by object 2022h synchronization_encoder_select (section 3.11
Setpoint / actual value selection on page 78).

Index 202Eh
Name velocity_demand_sync_value
Info speed_unit ro INT32

Value -- --

EtherCAT and CANopen manual Page 150 of 191

5 Operating modes

5.6.2.6 Object 606Ch: velocity_actual_value
The actual speed value can be read out via this object.

Index 606Ch
Name velocity_actual_value
Info speed_unit ro PDO INT32

Value -- --

5.6.2.7 Object 2074h: velocity_actual_value_filtered
The velocity_actual_value_filtered object can be used to read out a filtered actual
velocity value that should only be used for display purposes. In contrast to velocity_
actual_value, velocity_actual_value_filtered is not used in the velocity control loop, but
is used to protect the servo drive against overspeed. The filter time constant can be set
via Object 2073h (velocity_display_filter_time). See section 3.6.2.2Object 2073h:
velocity_display_filter_time on page 62.

Index 2074h
Name velocity_actual_value_filtered
Info speed_unit ro PDO INT32

Value --

Figure 26: Determining velocity_actual_value and velocity_actual_value_filtered

EtherCAT and CANopen manual Page 151 of 191

5 Operating modes

5.6.2.8 Object 606Dh: velocity_window
The velocity_window_time and velocity_window objects are used to set the window
comparator for comparing the actual speed value with the target velocity (object 60FFh).
To set bit 10 target_reached in the statusword object, the speed must be within
velocity_window for the time specified in velocity_window_time.

Index 606Dh
Name velocity_window
Info speed_unit rw PDO UINT16

Value -- --

5.6.2.9 Object 606Eh: velocity_window_time
The velocity_window_time and velocity_window objects are used to set the window
comparator for comparing the actual speed value with the target velocity (object 60FFh).
To set bit 10 target_reached in the statusword object, the speed must be within
velocity_window for the time specified in velocity_window_time.

Index 606Eh
Name velocity_window_time
Info ms rw PDO UINT16

Value 0...4999 0

5.6.2.10 Object 606Fh: velocity_threshold
The velocity_threshold and velocity_threshold_time objects specify the actual speed
value at which the drive is considered to be standing still. If the drive exceeds the speed
specified under velocity_threshold for velocity_threshold_time, bit 12 (velocity = 0) is
deleted in the statusword.

Index 606Fh
Name velocity_threshold
Info speed_unit rw PDO UINT16

Value -- --

EtherCAT and CANopen manual Page 152 of 191

5 Operating modes

5.6.2.11 Object 6070h: velocity_threshold_time
The velocity_threshold and velocity_threshold_time objects specify the actual speed
value at which the drive is considered to be standing still. If the drive exceeds the speed
specified under velocity_threshold for velocity_threshold_time, bit 12 (velocity = 0) is
deleted in the statusword.

Index 6070h
Name velocity_threshold_time
Info ms rw PDO UINT16

Value 0...4999 0

5.6.2.12 Object 6080h: max_motor_speed
The max_motor_speed object gives the highest permitted speed for the motor in min-1.
The object is used to protect the motor and can be taken from the motor data sheet. The
speed setpoint is limited to this value.

Index 6080h
Name max_motor_speed

Info min-1 rw PDO UINT16

Value 0...32767 --

5.6.2.13 Object 60FFh: target_velocity
The target_velocity object is the setpoint for the ramp generator.

Index 60FFh
Name target_velocity
Info speed_unit rw PDO INT32

Value -- --

EtherCAT and CANopen manual Page 153 of 191

5 Operating modes

5.6.2.14 Speed ramps
If Profile Velocity Mode is selected as modes_of_operation, the setpoint ramp is also
activated. Thus it is possible to limit a step-shaped setpoint change to a certain velocity
change per time via the profile_acceleration and profile_deceleration objects. The servo
drive not only offers the possibility to use different values for deceleration and
acceleration, but also to set different accelerations for positive and negative speed. The
following figure illustrates this behavior:

Figure 27: Speed ramps

To be able to parameterise these 4 accelerations individually, the velocity_ramps object
group is available. It should be noted that the profile_acceleration and profile_
deceleration objects change the same internal accelerations as the velocity_ramps. If
the profile_acceleration is written, velocity_acceleration_pos and velocity_acceleration_
neg are changed together, if the profile_deceleration is written, velocity_deceleration_
pos and velocity_deceleration_neg are changed together.
If a 1 is written to the velocity_ramps_enable object, the setpoints are passed through
the ramp generator.

Index 2090h
Name velocity_ramps
Type RECORD 05h

Sub-Index 01h
Name velocity_rampe_enable
Info -- rw UINT8

Value 0, 1 --

Sub-Index 02h
Name velocity_acceleration_pos
Info acceleration_unit rw INT32

Value -- --

Sub-Index 03h
Name velocity_deceleration_pos
Info acceleration_unit rw INT32

Value -- --

EtherCAT and CANopen manual Page 154 of 191

5 Operating modes

Sub-Index 04h
Name velocity_acceleration_neg
Info acceleration_unit rw INT32

Value -- --

Sub-Index 05h
Name velocity_deceleration_neg
Info acceleration_unit rw INT32

Value -- --

EtherCAT and CANopen manual Page 155 of 191

5 Operating modes

5.7 Profile Torque Mode

5.7.1 Overview
This chapter describes the torque controlled operation. This operating mode allows the
servo drive to use an external torque setpoint (target_torque), which can be smoothed
by the integrated ramp generator. Thus it is possible to use the servo drive in
applications where both the position controller and the speed controller are shifted to a
superordinate control.

Figure 28: Structure of the torque-controlled operation mode

The torque_slope and torque_profile_type parameters must be specified for the ramp
generator. If bit 8 halt is set in the controlword, the ramp generator reduces the torque
to zero. Accordingly, it increases it again to the target_torque, if bit 8 is deleted again. In
both cases the ramp generator considers the torque_slope and the torque_profile_type.
All definitions within this chapter refer to rotary motors. If linear motors are used, all
"torque" objects must refer to a "force" instead. For simplicity, the objects are not
duplicated and their names should not be changed. The operating modes Profile
Position Mode and Profile Velocity Mode require the torque controller for their function.
Therefore, it is always necessary to parameterise it.

EtherCAT and CANopen manual Page 156 of 191

5 Operating modes

5.7.2 Description of objects

5.7.2.1 Important objects from other sections
Index Name Section Page

6040h controlword 4 Device Control 92

60F9h motor_parameters 3.5 Current controller and motor adaption 54

6075h motor_rated_current

6073h max_current

5.7.2.2 Object 6071h: target_torque
This parameter is the input value for the torque controller in torque-controlled mode
(section 5.7 Profile Torque Mode on page 156). It is specified in thousandths of the
nominal torque (object 6076h).

Index 6071h
Name target_torque
Info ‰ (1000 = motor_rated torque) rw PDO INT16

Value -- --

5.7.2.3 Object 6072h: max_torque
This value represents the maximum permissible torque of the motor. It is specified in
thousandths of the nominal torque (object 6076h). If, for example, a twofold overload of
the motor is permissible for a short time, the value 2000 must be entered here.

 Object 6072h and Object 6073h are dependent on each other
Object 6072h (max_torque) and object 6073h (max_current) are dependent on each
other and may only be written if object 6075h(motor_rated_current) has been written
with a valid value beforehand.

Index 6072h
Name max_torque
Info ‰ (1000 = motor_rated torque) rw PDO UINT16

Value 1000...65535 --

5.7.2.4 Object 6074h: torque_demand_value
This object can be used to read out the current torque setpoint in thousandths of the
nominal torque (6076h). The internal limitations of the servo drive (current limits and I2t-
monitoring) are taken into account here.

EtherCAT and CANopen manual Page 157 of 191

5 Operating modes

Index 6074h
Name torque_demand_value
Info ‰ (1000 = motor_rated torque) ro PDO INT16

Value -- --

5.7.2.5 Object 6076h: motor_rated_torque
This object indicates the nominal torque of the motor. This can be taken from the type
plate of the motor. It must be entered in the unit 0.001 Nm.

Index 6076h
Name motor_rated_torque
Info 0.001 Nm rw PDO UINT32

Value -- --

5.7.2.6 Object 6077h: torque_actual_value
This object can be used to read out the actual torque value of the motor in thousandths
of the nominal torque (object 6076h).

Index 6077h
Name torque_actual_value
Info ‰ (1000 = motor_rated torque) ro PDO INT16

Value -- --

5.7.2.7 Object 6078h: current_actual_value
This object can be used to read out the actual current value of the motor in thousandths
of the rated current (object 6075h).

Index 6078h
Name current_actual_value
Info ‰ (1000 = motor_rated current) ro PDO INT16

Value -- --

5.7.2.8 Object 6079h: dc_link_circuit_voltage
The DC link voltage of the servo drive can be read out via this object. The voltage is
specified in the unit millivolts.

EtherCAT and CANopen manual Page 158 of 191

5 Operating modes

Index 6079h
Name dc_link_circuit_voltage
Info mV ro PDO UINT32

Value -- --

5.7.2.9 Object 6087h: torque_slope
This parameter describes the rate of change of the setpoint ramp. This is to be specified
in thousandths of the nominal torque per second. For example, the torque setpoint
target_torque is increased from 0 Nm to the value motor_rated_torque. If the output
value of the torque ramp should reach this value in one second, then the value 1000
must be written into this object.

Index 6087h
Name torque_slope
Info motor_rated_torque / 1000 s rw PDO UINT32

Value -- --

5.7.2.10 Object 6088h: torque_profile_type
The torque_profile_type object is used to specify the waveform with which a setpoint
step is executed. At present, only the linear ramp is implemented in this servo drive, so
that this object can only be written with the value 0.

Index 6088h
Name torque_profile_type
Info -- rw PDO INT16

Value 0 0

Value Description

0 Linear ramp

EtherCAT and CANopen manual Page 159 of 191

6 Detailed description of the CANopen protocol

6 Detailed description of the CANopen
protocol

6.1 Introduction
CANopen provides a simple and standardised way to access the parameters of the
servo drive (e.g. the maximummotor current). For this purpose, each parameter (CAN
object) is assigned a unique number (index and subindex). The totality of all parameters
is called the object dictionary. Two main methods are available for accessing the CAN
objects via the CAN bus: A confirmed access method, in which the servo drive
acknowledges each parameter access (via SDOs) and an unconfirmed access method,
in which no acknowledgement is made (via PDOs). As a rule, the servo drive is
parameterised via SDOs, while the cyclic process data is exchanged via PDOs.
The following communication objects are defined in total:

SDO Service Data Object Are used for normal parameterization of the
servo drive

PDO Process Data
Object

Fast exchange of process data (e.g. actual
speed) possible

SYNC Synchronization
Message

Synchronization of multiple CAN nodes

EMCY Emergency
Message

Transfer of error messages

NMT Network
Management

Network service: For example, all CAN
nodes can be acted upon simultaneously

BOOTUP Error Control
Protocol

Bootup message

HEARTBEAT Error Control
Protocol

Monitoring of communication participants
through periodic messages

NODEGUARDING Error Control
Protocol

Monitoring of communication participants
through periodic messages

Each message sent on the CAN bus contains a type of address which can be used to
determine for which bus station the message is intended. This number is called
identifier. The lower the identifier, the higher the priority of the message. Identifiers are
defined for each of the communication objects mentioned above. The following figure
shows the basic structure of a CANopen message:

EtherCAT and CANopen manual Page 160 of 191

6 Detailed description of the CANopen protocol

6.2 Access via SDO
The object dictionary of the servo drive can be accessed via the service data objects
(SDO). SDO accesses always originate from the superordinate control (host). The host
sends either a write command to the servo drive to change a parameter of the object
dictionary or a read command to read out a parameter. For each command, the host
receives a response that either contains the read value or - in the case of a write
command - serves as an acknowledgement. To allow the servo drive to recognise that
the command is intended for it, the host must send the command with a specific
identifier. This identifier consists of the base 600h + node number of the servo
drive concerned. The servo drive responds accordingly with the identifier 580h +
node number. The structure of the commands or the responses depends on the data
type of the object to be read or written, since either 1, 2 or 4 data bytes must be sent or
received. The following data types are supported:

UINT8 8-bit value unsigned 0 ... 255

INT8 8-bit value signed -128 ... 127

UINT16 16-bit value unsigned 0 ... 65536

INT16 16-bit value signed -32768 ... 32767

UINT32 32-bit value unsigned 0 ... (232 - 1)

INT32 32-bit value signed - (231) ... (231 - 1)

VISSTR Visible string ---

EtherCAT and CANopen manual Page 161 of 191

6 Detailed description of the CANopen protocol

6.2.1 SDO sequences for reading and writing
In order to read or write objects of these number types, the sequences listed below are
to be used. The commands for writing a value to the servo drive start with a different
identifier depending on the data type. The response identifier, however, is always the
same. Read commands always start with the same identifier and the servo drive
responds differently depending on the data type returned. All numbers are in
hexadecimal notation.

EXAMPLE

 Wait for the acknowledgement from the servo drive!
Only when the servo drive has acknowledged the request further requests may be
sent.

EtherCAT and CANopen manual Page 162 of 191

6 Detailed description of the CANopen protocol

6.2.2 SDO error response (abort codes)
In case of an error during reading or writing (e.g. because the written value is too large),
the servo drive responds with an error code instead of acknowledging:

Error code
F3 F2 F1 F0

Meaning

05 03 00 00h Toggle bit not alternated

05 04 00 01h Client/server command specifier not valid or unknown

06 01 00 00h Unsupported access to an object

06 01 00 01h Attempt to read a write only object

06 01 00 02h Attempt to write a read only object

06 02 00 00h Object does not exist in the object dictionary

06 04 00 41h Object cannot be mapped to the PDO (e.g. a ro-object in an RPDO)

06 04 00 42h The number and length of the objects to be mapped would exceed PDO length

06 04 00 43h General parameter incompatibility reason

06 04 00 47h General internal incompatibility in the device

06 06 00 00h Access failed due to an hardware error *1)

06 07 00 10h Data type does not match, length of service parameter does not match

06 07 00 12h Data type does not match, length of service parameter too high

06 07 00 13h Data type does not match, length of service parameter too low

06 09 00 11h Sub-index does not exist

06 09 00 30h Value range of parameter exceeded (only for write access)

06 09 00 31h Value of parameter written too high

06 09 00 32h Value of parameter written too low

06 09 00 36h Maximum value is less than minimum value

08 00 00 20h Data cannot be transferred or stored to the application *1)

08 00 00 21h Data cannot be transferred or stored to the application because of local control

08 00 00 22h Data cannot be transferred or stored to the application because of the present device
state *3)

08 00 00 23h Object dictionary dynamic generation fails or no object dictionary is present *2)

*1) This abort code is returned according to DS301 if store_parameters / restore_
parameters are accessed incorrectly.
*2) This abort code is returned e.g. if another bus system controls the servo drive or
parameter access is not allowed.
*3) "Device state" is to be understood generally here: It can be the wrong operating
mode, as well as a non-existent technology module or similar.

EtherCAT and CANopen manual Page 163 of 191

6 Detailed description of the CANopen protocol

6.2.3 Simulation of SDO accesses
The firmware of the servo drives offers the possibility to simulate SDO accesses via the
parameterisation interface (e.g. the transfer window of the MPC ServoCommander).
Thus, objects written via the CAN bus can be read and controlled via the
parameterization interface. The syntax of the commands is:

1) In the case of an error, the response is structured the same for all 3 write commands
(8, 16, 32 bits). The commands are entered as characters without any spaces.

 Test commands are not real-time capable
Access via the parameterisation interface is not suitable for real-time communication.

EtherCAT and CANopen manual Page 164 of 191

6 Detailed description of the CANopen protocol

6.3 Access via PDO
Process data objects (PDOs) can be used to transfer data in an event-controlled
manner. The PDO only transfers payload data. Which parameters are transferred is
defined in advance between host and servo. In contrast to an SDO, there is no
acknowledgement when a PDO is transmitted. The following types of PDOs are
distinguished:

Transmit-PDO (TPDO) Servo→ Host Servo drive sends PDO on
occurrence of a specific event

Receive-PDO (RPDO) Host→ Servo Servo drive evaluates PDO on
occurrence of a specific event

The servo drive has four transmit and four receive PDOs.
Almost all objects of the object dictionary can be mapped into the PDOs, for example the
actual speed value, the actual position value or similar.
In the example below, the position actual value would be transmitted in data bytes 0...3
of the PDO and the speed actual value in bytes 4...7.

In this way almost any data telegrams can be defined. The following chapters describe
the settings required for this.

EtherCAT and CANopen manual Page 165 of 191

6 Detailed description of the CANopen protocol

6.3.1 Description of objects

Identifier of the PDO
COB_ID_used_by_PDO
The identifier on which the respective PDO is to be sent or received must be entered in
the object COB_ID_used_by_PDO. If bit 31 is set, the respective PDO is deactivated.
This is the default setting for all PDOs. The COB-ID may only be changed if the PDO is
deactivated, i.e. bit 31 is set. An identifier other than currently set in the servo drive may
therefore only be written if bit 31 is set at the same time. The set bit 30 when reading the
identifier indicates that the object cannot be queried by a remote frame. This bit is
ignored on writing and is always set on reading.

Number of objects to be transferred
number_of_mapped_objects
This object specifies how many objects are to be mapped into the corresponding PDO.
The following restrictions must be observed:

l Amaximum of 4 objects can be mapped per PDO
l A PDOmay have a maximum of 64 bits (8 bytes)

Objects to be transferred
first_mapped_object ... fourth_mapped_object
For each object to be contained in the PDO, the servo drive must be given the
corresponding index, subindex and length. The length specification must match the
length specification in the Object Dictionary. Parts of an object cannot be mapped.
The mapping entry is composed as follows:
Index (16 Bit), Subindex (8 Bit), Length (8 Bit)
To simplify the mapping, the following procedure is prescribed:

1. The number of mapped objects must be set to 0.
2. The parameters first_mapped_object...fourth_mapped_object may be written

(The total length of all objects is not relevant at this time).
3. The number of mapped objects is set to a value between 1...4. The length of all

these objects must not exceed 64 bits now.

EtherCAT and CANopen manual Page 166 of 191

6 Detailed description of the CANopen protocol

Transmission type
transmission_type and inhibit_time
For each PDO it can be defined which event causes the transmission (Transmit-PDO) or
the evaluation (Receive-PDO) of a message:

Value Meaning allowed
with

01h –F0h SYNC message
The numerical value indicates how many SYNC
messages must have arrived before the PDO is

l sent (T-PDO) or
l evaluated (R-PDO)

TPDOs
RPDOs

FEh Cyclic
The Transmit PDO is updated and sent cyclically by
the servo drive. The time period is defined by the
object inhibit_time in 100µs steps. In contrast, receive
PDOs are evaluated immediately after receipt.

TPDOs
(RPDOs)

FFh Change
The Transmit PDO is sent when at least 1 bit has
changed in the data of the PDO. This transmission_
type is also permitted for Receive-PDOs. In addition,
the inhibit_time can be used to define the minimum
interval between the transmission of two PDOs in
100µs steps.

TPDOs

Masking
transmit_mask_high and transmit_mask_low
If "Change" is selected as transmission_type, the TPDO is always sent if at least 1 bit of
the TPDO changes. But often it is needed that the TPDO is only sent if certain bits have
changed. Therefore the TPDO can be provided with a mask: Only the bits of the TPDO
that are set to "1" in the mask are used to evaluate whether the PDO has changed.
Since this function is manufacturer specific, all bits of the masks are set by default.

EtherCAT and CANopen manual Page 167 of 191

6 Detailed description of the CANopen protocol

EXAMPLE
The following objects are to be transmitted together in one PDO:

Index_Subindex Length Object name

6041h_00h 10h statusword

6061h_00h 08h modes_of_operation_display

60FDh_00h 20h digital_inputs

The first Transmit PDO (TPDO 1) is to be used, which is to be sent whenever one of the
digital inputs changes, but at most every 10 ms. 187h is to be used as identifier for this PDO.

1. Deactivate PDO
If the PDO is active, it must first be
deactivated, i.e. the identifier must be
written with bit 31 set:

2. Delete number of objects
To allow changing the object mapping,
the number of mapped objects must be
set to zero.

3. Configuring objects
Index and subindex of the objects listed
above must each be combined to a 32
bit value.

4. Set number of objects
Three objects are to be transmitted in
the PDO.

5. Set transmission type
The PDO should be sent on change of
the digital inputs. To ensure that only the
change of the digital inputs leads to
sending, the PDO is masked.The PDO
should be sent at most every 10 ms
(100x100µs).

6. Set identifier
The PDO is to be sent with identifier
187h: Writing of the identifier with
deleted bit 31:

cob_id_used_by_pdo = C0000187h

number_of_mapped_objects = 0

first_mapped_object = 60410010h
second_mapped_object = 60610008h
third_mapped_object = 60FD0020h

number_of_mapped_objects = 3

transmission_type = FFh

transmit_mask_low = 000000FFh
transmit_mask_high = FFFFFF00h

inhibit_time = 64h

cob_id_used_by_pdo = 40000187h

 Changing the PDO settings
Note that the PDO configuration may generally only be changed if the network status
(NMT) is not Operational. See also section 6.6 Network Management (NMT service)
on page 177.

6.3.2 Objects for PDO configuration
The individual objects for configuring the PDOs are the same for all 4 TPDOs and all 4
RPDOs. Therefore only the parameter description of the first TPDO is explicitly listed
below. It is to be used analogously also for the other PDOs, which are listed tabularly in
the following:

EtherCAT and CANopen manual Page 168 of 191

6 Detailed description of the CANopen protocol

Index 1800h
Name transmit_pdo_parameter_tpdo1
Type RECORD 03h

Sub-Index 01h
Name cob_id_used_by_pdo_tpdo1
Info -- rw UINT32

Value 181h...1FFh, Bit 30 and 31 may be
set C0000181h

Sub-Index 02h
Name transmission_type_tpdo1
Info -- rw UINT8

Value 0...8Ch, FEh, FFh FFh

Sub-Index 03h
Name inhibit_time_tpdo1
Info 100μs (10 = 1ms) rw UINT16

Value -- 0000h

Index 1A00h
Name transmit_pdo_mapping_tpdo1
Type RECORD 04h

Sub-Index 00h
Name number_of_mapped_objects_tpdo1
Info -- rw UINT8

Value 0...4 see Table

Sub-Index 01h
Name first_mapped_object_tpdo1
Info -- rw UINT32

Value -- see Table

Sub-Index 02h
Name second_mapped_object_tpdo1
Info -- rw UINT32

Value -- see Table

Sub-Index 03h
Name third_mapped_object_tpdo1
Info -- rw UINT32

Value -- see Table

EtherCAT and CANopen manual Page 169 of 191

6 Detailed description of the CANopen protocol

Sub-Index 04h
Name fourth_mapped_object_tpdo1
Info -- rw UINT32

Value -- see Table

 PDO must be deactivated before configuring.
Note that the object groups transmit _pdo_parameter_xxx and transmit_pdo_
mapping_xxx can only be written if the PDO is deactivated (Bit 31 in cob_id_used_by_
pdo_xxx set).

1. Transmit PDO
Index Comment Type Acc. Default Value

1800h_00h number of entries UINT8 ro 03 h
1800h_01h COB-ID used by PDO UINT32 rw C0000181h
1800h_02h transmission type UINT8 rw FFh
1800h_03h inhibit time (100 µs) UINT16 rw 0000h
1A00h_00h number of mapped objects UINT8 rw 01h
1A00h_01h first mapped object UINT32 rw 60410010h
1A00h_02h second mapped object UINT32 rw 00000000h
1A00h_04h fourth mapped object UINT32 rw 00000000h

tpdo_1_transmit_mask
Index Comment Type Acc. Default Value

2014h_00h number of entries UINT8 ro 02h

2014h_01h tpdo_1_transmit_mask_low UINT32 rw FFFFFFFFh

2014h_02h tpdo_1_transmit_mask_high UINT32 rw FFFFFFFFh

2. Transmit PDO
Index Comment Type Acc. Default Value

1801h_00h number of entries UINT8 ro 03h
1801h_01h COB-ID used by PDO UINT32 rw C0000281h
1801h_02h transmission type UINT8 rw FFh
1801h_03h inhibit time (100 µs) UINT16 rw 0000h
1A01h_00h number of mapped objects UINT8 rw 02h
1A01h_01h first mapped object UINT32 rw 60410010h
1A01h_02h second mapped object UINT32 rw 60610008h
1A01h_03h third mapped object UINT32 rw 00000000h
1A01h_04h fourth mapped object UINT32 rw 00000000h

EtherCAT and CANopen manual Page 170 of 191

6 Detailed description of the CANopen protocol

tpdo_2_transmit_mask
Index Comment Type Acc. Default Value

2015h_00h number of entries UINT8 ro 02h

2015h_01h tpdo_2_transmit_mask_low UINT32 rw FFFFFFFFh

2015h_02h tpdo_2_transmit_mask_high UINT32 rw FFFFFFFFh

3. Transmit PDO
Index Comment Type Acc. Default Value

1802h_00h number of entries UINT8 ro 03h
1802h_01h COB-ID used by PDO UINT32 rw C0000381h
1802h_02h transmission type UINT8 rw FFh
1802h_03h inhibit time (100 µs) UINT16 rw 0000h
1A02h_00h number of mapped objects UINT8 rw 02h
1A02h_01h first mapped object UINT32 rw 60410010h
1A02h_02h second mapped object UINT32 rw 60640020h
1A02h_03h third mapped object UINT32 rw 00000000h
1A02h_04h fourth mapped object UINT32 rw 00000000h
tpdo_3_transmit_mask
Index Comment Type Acc. Default Value

2016h_00h number of entries UINT8 ro 02h

2016h_01h tpdo_3_transmit_mask_low UINT32 rw FFFFFFFFh

2016h_02h tpdo_3_transmit_mask_high UINT32 rw FFFFFFFFh

4.Transmit PDO
Index Comment Type Acc. Default Value

1803h_00h number of entries UINT8 ro 03h
1803h_01h COB-ID used by PDO UINT32 rw C0000481h
1803h_02h transmission type UINT8 rw FFh
1803h_03h inhibit time (100 µs) UINT16 rw 0000h
1A03h_00h number of mapped objects UINT8 rw 02h
1A03h_01h first mapped object UINT32 rw 60410010h
1A03h_02h second mapped object UINT32 rw 606C0020h
1A03h_03h third mapped object UINT32 rw 00000000h
1A03h_04h fourth mapped object UINT32 rw 00000000h

tpdo_4_transmit_mask
Index Comment Type Acc. Default Value

2017h_00h number of entries UINT8 ro 02h

2017h_01h tpdo_4_transmit_mask_low UINT32 rw FFFFFFFFh

2017h_02h tpdo_4_transmit_mask_high UINT32 rw FFFFFFFFh

EtherCAT and CANopen manual Page 171 of 191

6 Detailed description of the CANopen protocol

1. Receive PDO
Index Comment Type Acc. Default Value

1400h_00h number of entries UINT8 ro 02h
1400h_01h COB-ID used by PDO UINT32 rw C0000201h
1400h_02h transmission type UINT8 rw FFh
1600h_00h number of mapped objects UINT8 rw 01h
1600h_01h first mapped object UINT32 rw 60400010h
1600h_02h second mapped object UINT32 rw 00000000h
1600h_03h third mapped object UINT32 rw 00000000h
1600h_04h fourth mapped object UINT32 rw 00000000h

2. Receive PDO
Index Comment Type Acc. Default Value

1401h_00h number of entries UINT8 ro 02h
1401h_01h COB-ID used by PDO UINT32 rw C0000301h
1401h_02h transmission type UINT8 rw FFh
1601h_00h number of mapped objects UINT8 rw 02h
1601h_01h first mapped object UINT32 rw 60400010h
1601h_02h second mapped object UINT32 rw 60600008h
1601h_03h third mapped object UINT32 rw 00000000h
1601h_04h fourth mapped object UINT32 rw 00000000h

3. Receive PDO
Index Comment Type Acc. Default Value

1402h_00h number of entries UINT8 ro 02h
1402h_01h COB-ID used by PDO UINT32 rw C0000401h
1402h_02h transmission type UINT8 rw FFh
1602h_00h number of mapped objects UINT8 rw 02h
1602h_01h first mapped object UINT32 rw 60400010h
1602h_02h second mapped object UINT32 rw 607A0020h
1602h_03h third mapped object UINT32 rw 00000000h
1602h_04h fourth mapped object UINT32 rw 00000000h

EtherCAT and CANopen manual Page 172 of 191

6 Detailed description of the CANopen protocol

4. Receive PDO
Index Comment Type Acc. Default Value

1403h_00h number of entries UINT8 ro 02h
1403h_01h COB-ID used by PDO UINT32 rw C0000501h
1403h_02h transmission type UINT8 rw FFh
1603h_00h number of mapped objects UINT8 rw 02h
1603h_01h first mapped object UINT32 rw 60400010h
1603h_02h second mapped object UINT32 rw 60FF0020h
1603h_03h third mapped object UINT32 rw 00000000h
1603h_04h fourth mapped object UINT32 rw 00000000h

6.3.3 Activation of PDOs
The following points must be fulfilled for the servo drive to send or evaluate PDOs:

l The object number_of_mapped_objects must be non-zero.
l Bit 31 in the cob_id_used_for_pdos object must be cleared.
l The communication status of the servo drive must be Operational (see section
6.6 Network Management (NMT service) on page 177)

The communication status of the servo drive must not be Operational so that PDOs can
be configured.

EtherCAT and CANopen manual Page 173 of 191

6 Detailed description of the CANopen protocol

6.4 EMERGENCYmessage
The servo drive monitors the function of its main assemblies. These include the power
supply, the power stage, the angle encoder evaluation and the technology slots
available on some servo drives. In addition, the motor (temperature, angle encoder) and
the limit switches are continuously monitored. Incorrect parameterizations can also lead
to error messages (division by zero, etc.).

6.4.1 Overview
The servo drive sends an EMERGENCYmessage when an error occurs or when an
error is acknowledged. The identifier of this message is composed of the identifier 80h
and the node number of the servo drive concerned.

After a reset, the servo drive is in the Error free state (which it may leave again
immediately if an error has been present from the start). The following state transitions
are possible:

Nr. Cause Description

0 Initialization
completed

1 Error occurs There was no error and an error occurs. An EMERGENCY
telegram with the error code of the occurred error is sent

2 Error
acknowledgement

An error acknowledgement (see section 4.3 controlword on
page 108) is attempted, but not all causes are resolved.

3 Error occurs There is already an error and another error occurs. An
EMERGENCY telegram with the error code of the new
error is sent.

4 Error
acknowledgement

An error acknowledgement is attempted and all causes are
eliminated. An EMERGENCY telegram with error code
0000 is sent.

EtherCAT and CANopen manual Page 174 of 191

6 Detailed description of the CANopen protocol

6.4.2 Structure of the EMERGENCYmessage
The EMERGENCYmessage consists of eight data bytes, where the first two bytes
contain an error_code. The third byte is intended for another error code (object 1001h),
but does not contain any relevant information. The remaining five bytes contain zeros.

An overview of all error codes that may occur can be found in section 7.3 Error codes of
the EMERGENCYmessage on page 186

6.4.3 Description of objects

Object 1003h: pre_defined_error_field
The respective error_code of the error messages is additionally stored in a four-level
error memory. This is structured like a shift register so that the last error that occurred is
always stored in object 1003h_01h (standard_error_field_0). By a read access to the
object 1003h_00h (pre_defined_error_field) it can be determined how many error
messages are currently stored in the error memory. The error memory is cleared by
writing the value 0 into the object 1003h_00h (pre_defined_error_field). In order to be
able to reactivate the output stage of the servo drive after an error, an error
acknowledgement (reset_fault, see section 4.3 controlword on page 108) must also
be performed.

Index 1003h
Name pre_defined_error_field
Type ARRAY 04h

Sub-Index 01h
Name standard_error_field_0
Info -- ro UINT32

Value -- 00000000h

Sub-Index 02h
Name standard_error_field_1
Info -- ro UINT32

Value -- 00000000h

Sub-Index 03h
Name standard_error_field_2
Info -- ro UINT32

Value -- 00000000h

EtherCAT and CANopen manual Page 175 of 191

6 Detailed description of the CANopen protocol

Sub-Index 04h
Name standard_error_field_3
Info -- ro UINT32

Value -- 00000000h

6.5 SYNCmessage
Several devices of a plant can be synchronised with each other. For this purpose, one of
the devices (usually the superordinate control) periodically sends out synchronization
messages. All connected servo drives receive these messages and use them to handle
the PDOs (siehe section 6.3 Access via PDO on page 165).

The identifier on which the servo drive receives the SYNCmessage is fixed at 80h. The
identifier can be read out via the object cob_id_sync.

Index 1005h
Name cob_id_sync
Info -- rw UINT32

Value 80h 80h

EtherCAT and CANopen manual Page 176 of 191

6 Detailed description of the CANopen protocol

6.6 Network Management (NMT service)
All CANopen devices can be controlled via the network management. The identifier with
the highest priority (000h) is reserved for this purpose. Commands can be sent to one or
all servo drives via NMT. Each command consists of two bytes, whereby the first byte
contains the command code (command specifier, CS) and the second byte the node
address (node id, NI) of the addressed servo drive. If zero is specified as node address,
all nodes in the network will be addressed (broadcast). This makes it possible, for
example, to trigger a reset in all devices at the same time. The servo drives do not
acknowledge the NMT commands. It can only be concluded indirectly (e.g. by the
Bootup message after a reset) that the reset was carried out successfully.
Structure of the NMTmessage:

States are defined in a state diagram for the NMT status of the CANopen node. State
changes can be triggered via the CS byte in the NMTmessage. These are essentially
oriented on the target state.

EtherCAT and CANopen manual Page 177 of 191

6 Detailed description of the CANopen protocol

Figure 29: NMT-State machine

Transition Name CS Target state NMT
state

1 Power on

2 Bootup Pre-Operational 7Fh
3 Start Remote Node 01h Operational 05h
4 Enter Pre-Operational 80h Pre-Operational 7Fh
5 Stop Remote Node 02h Stopped 04h
6 Start Remote Node 01h Operational 05h
7 Enter Pre-Operational 80h Pre-Operational 7Fh
8 Stop Remote Node 02h Stopped 04h
9 Reset Communication 82h Pre-Operational 7Fh
10 Reset Communication 82h Pre-Operational 7Fh
11 Reset Communication 82h Pre-Operational 7Fh
12 Reset Application 81h Pre-Operational 7Fh
13 Reset Application 81h Pre-Operational 7Fh
14 Reset Application 81h Pre-Operational 7Fh

State transitions 2, 15 and 16 are executed automatically by the servo drive when
initialization is complete.
Depending on the NMT status, certain communication objects cannot be used: For
example, it is absolutely necessary to set the NMT status to Operational so that the
servo drive sends PDOs.

EtherCAT and CANopen manual Page 178 of 191

6 Detailed description of the CANopen protocol

State Description SDO PDO NMT

Reset Application No communication. All CAN objects are
reset to their reset values (application
parameter set).

- - -

Reset
Communication

No communication.
The CAN controller is reinitialised. - - -

Initialising State after hardware reset.
Resetting the CAN node, sending the
bootup message.

- - -

Pre-Operational Communication via SDOs possible. PDOs
not active (No sending / evaluation). X - X

Operational Communication via SDOs possible. All
PDOs active (sending / evaluating). X X X

Stopped No communication except heartbeating. - - X

 Note the following instructions
l NMT telegrams must not be sent in a burst (one immediately after the other).
l There must be at least twice the position controller cycle time between two
successive NMT telegrams on the bus (even for different nodes!) so that the
servo drive can process the NMT telegrams correctly.

l The NMT command "Reset Application" is delayed, if necessary, until a running
save operation is completed, as otherwise the save operation would remain
incomplete (Defective parameter set). The delay can be in the range of a few
seconds.

l The communication status must be set to Operational for the servocontroller to
send and receive PDOs.

EtherCAT and CANopen manual Page 179 of 191

6 Detailed description of the CANopen protocol

6.7 Bootup

6.7.1 Overview
After switching on the power supply or after a reset, the servo drive reports via a bootup
message that the initialization phase has been completed. The servo drive then has the
NMT status Pre-Operational.

6.7.2 Structure of the Bootup message
The bootup message is structured almost identically to the following heartbeat
message. Only a zero is sent instead of the NMT status.

6.8 Heartbeat (Error Control Protocol)

6.8.1 Overview
To monitor the communication between slave (drive) and master, the so-called
heartbeat protocol can be activated: The drive sends cyclic messages to the master.
The master can check the cyclic occurrence of these messages and initiate appropriate
measures if they fail to appear. Since both heartbeat and nodeguarding telegrams (see
section 6.9 Nodeguarding (Error Control Protocol) on page 182) are sent with the
identifier 700h + node number, both protocols cannot be active at the same time. If
both protocols are activated at the same time, only the heartbeat protocol is active.

EtherCAT and CANopen manual Page 180 of 191

6 Detailed description of the CANopen protocol

6.8.2 Structure of the Heartbeat message
The heartbeat telegram is sent with the identifier 700h + node number. It contains only
1 byte of user data, the NMT status of the servo drive (see section 6.6 Network
Management (NMT service) on page 177).

NMT-State State name

04h Stopped

05h Operational

7Fh Pre-Operational

6.8.3 Description of objects

Object 1017h: producer_heartbeat_time
To activate the heartbeat functionality, the time between two heartbeat telegrams can be
defined via the object producer_heartbeat_time.

Index 1017h
Name producer_heartbeat_time
Info ms rw UINT16

Value 0...65536 0

The producer_heartbeat_time can be stored in the parameter set. If the servo drive
starts with a producer_heartbeat_time not equal to zero, the bootup message is
considered the first heartbeat. The servo drive can only be used as a heartbeat
producer. Object 1016h (consumer_heartbeat_time) is therefore only implemented for
compatibility reasons and always returns 0.

EtherCAT and CANopen manual Page 181 of 191

6 Detailed description of the CANopen protocol

6.9 Nodeguarding (Error Control Protocol)

6.9.1 Overview
The nodeguarding protocol can also be used to monitor the communication between
slave (drive) and master. In contrast to the heartbeat protocol, with nodeguarding the
master and slave monitor each other: The master cyclically asks the drive for its NMT
status. A certain bit is toggled in each response from the servo drive. If these answers
are missing or if the servo drive always answers with the same toggle bit, the master can
react accordingly. Similarly, the drive monitors the regular arrival of nodeguarding
requests from the master: if the messages remain missing for a certain period of time,
the servo drive triggers error 12-4. Since both heartbeat and nodeguarding telegrams
(see section 6.9 Nodeguarding (Error Control Protocol) on page 182) are sent with the
identifier 700h + node number, both protocols cannot be active at the same time. If
both protocols are activated at the same time, only the heartbeat protocol is active.

6.9.2 Structure of the Nodeguarding messages
The request of the master must be sent as remote frame with the identifier 700h + node
number. With a remote frame a special bit is additionally set in the telegram, the remote
bit. Remote frames have in principle no data.

The servo drive response is structured in the same way as the heartbeat message. It
contains only 1 byte of user data, the togglebit and the NMT status of the servo drive.

Bit Value Name Description

7 80h toggle_bit Changes with every telegram

0...6 7Fh nmt_state section 6.6 Network Management (NMT service) on
page 177

The monitoring time for requests from the master can be parameterised. The monitoring
starts with the first received remote request of the master. From this point on, the remote
requests must arrive before the set monitoring time has elapsed, otherwise error 12-4 is
triggered. The togglebit is reset by the NMT command Reset Communication. It is
therefore deleted in the first response of the servo drive.

EtherCAT and CANopen manual Page 182 of 191

6 Detailed description of the CANopen protocol

6.9.3 Description of objects

6.9.3.1 Object 100Ch: guard_time
To activate the node guarding monitoring, the maximum time between two remote
queries of the master is parameterised. This time is determined in the servo drive from
the product of guard_time (100Ch) and life_time_factor (100Dh). It is therefore
recommended to describe the life_time_factor with 1 and then to specify the time directly
via the guard_time in milliseconds.

Index 100Ch
Name guard_time
Info ms rw UINT16

Value 0...65536 0

6.9.3.2 Object 100Dh: life_time_factor
The life_time_factor should be set to 1 to specify the guard_time directly.

Index 100Dh
Name life_time_factor
Info -- rw UINT8

Value 0...1 0

EtherCAT and CANopen manual Page 183 of 191

6 Detailed description of the CANopen protocol

6.10 Table of identifiers
The following table gives an overview of the identifiers used:

Object type Identifier (hexadecimal) Remark

SDO (Host to Servo) 600h+ Node number

SDO (Servo to Host) 580h + Node number

TPDO1 181h / 180h + Node number

These are the default values.

The node number can be added
automatically if the corresponding
option is set (see section 2.1.5
Activate CANopen on page 16).

TPDO2 281h / 280h + Node number

TPDO3 381h / 380h + Node number

TPDO4 481h / 480h + Node number

RPDO1 201h / 200h + Node number

RPDO2 301h / 300h + Node number

RPDO3 401h / 400h + Node number

RPDO4 501h / 500h + Node number

SYNC 080h
EMCY 080h +Node number

HEARTBEAT 700h +Node number

NODEGUARDING 700h +Node number

BOOTUP 700h +Node number

NMT 000h

EtherCAT and CANopen manual Page 184 of 191

7 Appendix

7 Appendix

7.1 CANopen
CANopen is a standard developed by the association "CAN in Automation". A large
number of device manufacturers are organised in this association. This standard has
now replaced all manufacturer-specific CAN protocols.
The relevant elements of the object dictionary and the associated access methods are
described in this CANopen manual.

CAN in Automation (CiA)
Kontumazgarten 3
DE-90429 Nürnberg
Tel.: +49-911-928819-0
Fax: +49-911-928819-79
headquarters(at)can-cia.org
www.can-cia.de

The CANopen implementation of the servo drive is based on the following standards:

l CiA Draft Standard 301, Version 4.02, 13. Februar 2002
l CiA Draft Standard Proposal 402, Version 2.0, 26. Juli 2002

7.2 Characteristics of the CAN interface
The CAN interface has the following characteristics:

l CAN specification V2.0 Part A (Part B passive, i.e. messages of this type are
tolerated but not processed)

l Physical layer: ISO 11898

EtherCAT and CANopen manual Page 185 of 191

mailto:headquarters@can-cia.org
http://www.can-cia.de/

7 Appendix

7.3 Error codes of the EMERGENCYmessage
CAN
code

Error
number

Description

2300h 31-x Group 31: I²t

2311h 31-1 I²t servo drive

2312h 31-0 I²t motor

2313h 31-2 I²t PFC

2314h 31-3 I²t braking resistor

2320h 6-x Group 6: Short circuit in the power output stage

3200h 32-x Group 32: PFC

3210h 7-x Group 7: Overvoltage

3220h 2-x Group 2: Undervoltage

3280h 32-0 DC bus circuit charging time exceeded

3281h 32-1 Undervoltage for active PFC

3282h 32-5 Brake chopper overload. DC bus circuit could not be discharged.

3283h 32-6 Discharging period DC bus circuit exceeded

3284h 32-7 Supply voltage missing for enabling

3285h 32-8 Supply voltage breakdown while servo drive enabled

3286h 32-9 Phase failure

4200h 4-x Group 4: Overtemperature

4210h 4-0 Overtemperature power output stage

4280h 4-1 Overtemperature DC bus circuit

4310h 3-x Group 3: Overtemperature motor

5080h 90-x Group 90: HW initialisation

5110h 5-x Group 5: Internal voltage supply

5114h 5-0 Failure of internal voltage 1

5115h 5-1 Failure of internal voltage 2

5116h 5-2 Driver supply failure

5200h 21-x Group 21: Current measurement

5220h 16-4 Unexpected hardware error

5280h 21-0 Error 1 current measurement U

5281h 21-1 Error 1 current measurement V

5282h 21-2 Error 2 current measurement U

5283h 21-3 Error 2 current measurement V

5410h 5-3 Undervoltage digital I/Os

5410h 5-4 Overcurrent digital I/Os

5430h 24-x Group 24: Analogue input monitoring

EtherCAT and CANopen manual Page 186 of 191

7 Appendix

CAN
code

Error
number

Description

5500h 26-x Group 26: Flash

5580h 26-0 No user parameter set

5581h 26-1 Checksum error

5582h 26-2 Flash: write error

5583h 26-3 Flash: erase error

5584h 26-4 Flash: error in internal flash

5585h 26-5 No calibration data

5586h 26-6 No user position data sets

6000h 25-x Group 25: Invalid device type

6000h 91-x Group 91: SW initialisation

6080h 25-0 Invalid device type

6081h 25-1 Device type not supported

6082h 25-2 Hardware revision not supported

6083h 25-3 Device functionality restricted

6100h 16-x Group 16: Program execution

6180h 1-x Group 1: Stack overflow

6181h 16-0 Incorrect program execution

6182h 16-1 Illegal interrupt

6183h 16-3 Unexpected state

6184h 15-x Group 15: Mathematics

6185h 15-0 Division by zero

6186h 15-1 Out of range error

6187h 16-2 Initialisation error

6188h 82-x Group 82: Internal sequence control

6320h 36-x Group 36: Parameters

6380h 30-x Group 30: Internal calculations

7122h 14-x Group 14: Motor and resolver identification

7300h 8-x Group 8: Angle encoder

7380h 8-0 Resolver/Hall angle encoder error

7382h 8-2 Incremental encoder: Z0 track signals error

7383h 8-3 Incremental encoder: Z1 track signals error

7384h 8-4 Digital incremental encoder: track signals error

7385h 8-5 Incremental encoder: hall signals error

7386h 8-6 Angle encoder communication error

7387h 8-7 Master frequency input: Incorrect signal amplitude incremental
track

7388h 8-8 Internal angle encoder error

EtherCAT and CANopen manual Page 187 of 191

7 Appendix

CAN
code

Error
number

Description

7389h 8-9 Encoder at [X2B/X6] not supported

73A0h 9-x Group 9: Encoder parameter set

73A1h 9-0 Encoder parameter set: out-of-date format

73A2h 9-1 Encoder parameter set cannot be decoded

73A3h 9-2 Encoder parameter set: unknown version

73A4h 9-3 Encoder parameter set: corrupted data structure

73A5h 9-7 Encoder EEPROM is write protected

73A6h 9-9 Too small memory size of encoder EEPROM

7580h 60-x Group 60: Ethernet

7581h 61-x Group 61: Ethernet

8000h 45-x Group 45: IGBT driver supply

8080h 43-x Group 43: HW limit switches

8081h 43-0 Limit switch: negative setpoint inhibited

8082h 43-1 Limit switch: positive setpoint inhibited

8083h 43-2 Limit switch: positioning suppressed

8084h 45-0 Driver supply cannot be switched off

8085h 45-1 Driver supply cannot be switched on

8086h 45-2 Driver supply has been activated

8090h 51-x Group 51: FSM 2.0

8091h 51-0 No / unknown FSMmodule or driver supply faulty

8093h 51-2 FSM: unequal module type

8094h 51-3 FSM: unequal module version

8095h 51-4 FSM: error in SSIO communication

8096h 51-5 FSM: error in brake activation

8097h 51-6 FSM: unequal serial number

8098h 52-x Group 52: FSM 2.0 STO

8099h 52-1 FSM: discrepancy time expired

809Ah 52-2 FSM: STOA/STOB deactivated while power output stage
enabled

809Bh 52-3 FSM: Limitation error

80A0h 53-x Group 53: FSM: Violation of safety conditions

80A1h 53-0 USF0: safety condition violated

80A2h 53-1 USF1: safety condition violated

80A3h 53-2 USF2: safety condition violated

80A4h 53-3 USF3: safety condition violated

80A9h 54-x Group 54: FSM: Violation of safety conditions

80AAh 54-0 SBC: safety condition violated

EtherCAT and CANopen manual Page 188 of 191

7 Appendix

CAN
code

Error
number

Description

80ACh 54-2 SS2: safety condition violated

80ADh 54-3 SOS: safety condition violated

80AEh 54-4 SS1: safety condition violated

80AFh 54-5 STO: safety condition violated

80B0h 54-6 SBC: brake not released for > 10 days

80B1h 54-7 SOS: SOS requested for > 10 days

80C0h 55-x Group 55: FSM: Actual value evaluation 1

80C1h 55-0 FSM: no actual speed / position value available or standstill for >
10 days

80C2h 55-1 FSM: SINCOS encoder [X2B] - signal error

80C3h 55-2 FSM: SINCOS encoder [X2B] - standstill > 10 days

80C4h 55-3 FSM: Resolver [X2A] - signal error

80C6h 55-7 FSM: other encoder [X2B] - Faulty angle information

80C7h 55-8 FSM: impermissible acceleration detected

80D0h 56-x Group 56: FSM: Actual value evaluation 2

80D1h 56-8 FSM: speed / angle difference encoder 1 - 2

80D2h 56-9 FSM: error cross comparison encoder evaluation

80E0h 57-x Group 57: FSM: Inputs/Outputs

80E1h 57-0 FSM: I/O - Self test error (internal/external)

80E2h 57-1 FSM: digital inputs - signal level error

80E3h 57-2 FSM: digital inputs - test pulse error

80E7h 57-6 FSM: overtemperature

80E8h 58-x Group 58: FSM: Communication / Parameterisation

80E9h 58-0 FSM: plausibility check of parameters

80EAh 58-1 FSM: general error parameterisation

80EDh 58-4 FSM: buffer internal communication

80EEh 58-5 FSM: communication safety module - servo drive

80EFh 58-6 FSM: error in cross comparison for processors 1 - 2

80F0h 59-x Group 59: FSM: Internal Error

80F1h 59-1 FSM: failsafe supply / safe pulse inhibitor

80F2h 59-2 FSM: error external power supply

80F3h 59-3 FSM: error internal power supply

80F4h 59-4 FSM: error management: too many errors

80F5h 59-5 FSM: error writing to permanent event memory

80F6h 59-6 FSM: error on saving parameter set

80F7h 59-7 FSM: flash checksum error

80F8h 59-8 FSM: internal monitoring, processor 1 - 2

EtherCAT and CANopen manual Page 189 of 191

7 Appendix

CAN
code

Error
number

Description

80F9h 59-9 FSM: other unexpected error

8100h 12-x Group 12: CAN communication

8100h 13-x Group 13: Timeout CAN bus

8120h 12-1 CAN: communication error, bus OFF

8130h 12-4 CAN: Node Guarding

8180h 12-0 CAN: duplicate node number

8181h 12-2 CAN: communication error (sending)

8182h 12-3 CAN: communication error (receiving)

8183h 12-9 CAN: protocol error

8184h 13-0 Timeout CAN bus

8200h 50-x Group 50: CAN communication

8210h 12-5 CAN: RPDO too short

8480h 35-x Group 35: Linear motor

8600h 42-x Group 42: Positioning

8611h 17-x Group 17: Max. following error exceeded

8611h 27-x Group 27: Following error monitoring

8612h 40-x Group 40: SW limit switches

8680h 42-0 Positioning: no follow-up position: stop

8681h 42-1 Positioning: reversal of rotation not permissible: stop

8682h 42-2 Positioning: reversal of rotation after stop not permissible

8700h 34-x Group 34: Fieldbus

8780h 34-0 No synchronisation via fieldbus

8781h 34-1 Fieldbus synchronisation error

8A00h 11-x Group 11: Homing run

8A00h 33-x Group 33: Following error encoder emulation

8A80h 11-0 Error when homing run is started

8A81h 11-1 Error during homing run

8A82h 11-2 Homing: no valid index pulse

8A83h 11-3 Homing: timeout

8A84h 11-4 Homing: incorrect / invalid limit switch

8A85h 11-5 Homing: I²t / following error

8A86h 11-6 Homing: end of search distance reached

8A87h 33-0 Following error encoder emulation

F000h 80-x Group 80: IRQ_0_3

F080h 80-0 Time overflow current control IRQ

F081h 80-1 Time overflow speed control IRQ

EtherCAT and CANopen manual Page 190 of 191

7 Appendix

CAN
code

Error
number

Description

F082h 80-2 Time overflow position control IRQ

F083h 80-3 Time overflow interpolator IRQ

F084h 81-4 Time overflow low-level IRQ

F085h 81-5 Time overflow MDC IRQ

FF00h 28-x Group 28: Operating hours meter

FF01h 28-0 Missing operating hours meter

FF02h 28-1 Operating hours meter: write error

FF03h 28-2 Operating hours meter corrected

FF04h 28-3 Operating hours meter converted

EtherCAT and CANopen manual Page 191 of 191

	1 About this manual
	1.1 Structure of the warning notes
	1.2 Notation in this manual

	2 Quick-start guide
	2.1 CANopen
	2.1.1 Basics
	2.1.2 Wiring and pin assignment
	2.1.3 Wiring instructions
	2.1.4 Status LEDs
	2.1.5 Activate CANopen
	2.1.6 Integration of the servo drive in a master project

	2.2 EtherCAT
	2.2.1 Basics
	2.2.2 Wiring and pin assignment
	2.2.3 Wiring instructions
	2.2.4 Status LEDs (BL 4000‑C)
	2.2.5 Activate EtherCAT
	2.2.6 Integration of the servo drive in a master project
	2.2.7 EoE (Ethernet over EtherCAT®)
	2.2.7.1 Activating EoE in the master
	2.2.7.2 Configure Bridge

	3 Parameterisation
	3.1 Loading and saving parameter sets
	3.1.1 Overview
	3.1.2 Description of objects
	3.1.2.1 Object 1011h: restore_default_parameters
	3.1.2.2 Object 1010h: store_parameters

	3.2 Compatibility settings
	3.2.1 Overview
	3.2.2 Description of objects
	3.2.2.1 Object 6510h_F0h: compatibility_control

	3.3 Factor Group
	3.3.1 Overview
	3.3.2 Parameterisation of the Factor Group
	3.3.3 Description of objects
	3.3.3.1 Object 6093h: position_factor
	3.3.3.2 Object 6094h: velocity_encoder_factor
	3.3.3.3 Object 6097h: acceleration_factor
	3.3.3.4 Object 607Eh: polarity

	3.4 Power stage parameters
	3.4.1 Overview
	3.4.2 Description of objects
	3.4.2.1 Object 6510h_10h: enable_logic
	3.4.2.2 Object 6510h_30h: pwm_frequency
	3.4.2.3 Object 6510h_3Ah: enable_enhanced_modulation
	3.4.2.4 Object 6510h_31h: power_stage_temperature
	3.4.2.5 Object 6510h_32h: max_power_stage_temperature
	3.4.2.6 Object 6510h_33h: nominal_dc_link_circuit_voltage
	3.4.2.7 Object 6510h_34h: actual_dc_link_circuit_voltage
	3.4.2.8 Object 6510h_35h: max_dc_link_circuit_voltage
	3.4.2.9 Object 6510h_36h: min_dc_link_circuit_voltage
	3.4.2.10 Object 6510h_37h: enable_dc_link_undervoltage_error
	3.4.2.11 Object 6510h_40h: nominal_current
	3.4.2.12 Object 6510h_41h: peak_current

	3.5 Current controller and motor adaption
	3.5.1 Overview
	3.5.2 Description of objects
	3.5.2.1 Object 6075h: motor_rated_current
	3.5.2.2 Object 6073h: max_current
	3.5.2.3 Object 604Dh: pole_number
	3.5.2.4 Object 6410h_11h: encoder_offset_angle
	3.5.2.5 Object 6410h_10h: phase_order
	3.5.2.6 Object 6410h_03h: iit_time_motor
	3.5.2.7 Object 6410h_04h: iit_ratio_motor
	3.5.2.8 Object 6510h_3Dh: iit_ratio_servo
	3.5.2.9 Object 6510h_38h: iit_error_enable
	3.5.2.10 Object 6510h_2Eh: motor_temperature
	3.5.2.11 Object 6410h_14h: motor_temperature_sensor_polarity
	3.5.2.12 Object 6510h_2Fh: max_motor_temperature
	3.5.2.13 Object 60F6h: torque_control_parameters
	3.5.2.14 Object 203Ah: torque_feed_forward

	3.6 Velocity controller
	3.6.1 Overview
	3.6.2 Description of objects
	3.6.2.1 Object 60F9h: velocity_control_parameters
	3.6.2.2 Object 2073h: velocity_display_filter_time

	3.7 Position Controller
	3.7.1 Overview
	3.7.2 Description of objects
	3.7.2.1 Object 60FBh: position_control_parameter_set
	3.7.2.2 Object 6062h: position_demand_value
	3.7.2.3 Object 202Dh: position_demand_sync_value
	3.7.2.4 Object 6064h: position_actual_value
	3.7.2.5 Object 6066h: following_error_time_out
	3.7.2.6 Object 6065h: following_error_window
	3.7.2.7 Object 60F4h: following_error_actual_value
	3.7.2.8 Object 60FAh: control_effort
	3.7.2.9 Object 6410h_0Fh: rotor_position
	3.7.2.10 Object 6067h: position_window
	3.7.2.11 Object 6068h: position_window_time
	3.7.2.12 Object 6510h_22h: position_error_switch_off_limit
	3.7.2.13 Object 2030h: set_position_absolute
	3.7.2.14 Object 607Dh: software_position_limit
	3.7.2.15 Object 607Bh: position_range_limit
	3.7.2.16 Object 6510h_20h: position_range_limit_enable

	3.8 Setpoint limitation
	3.8.1 Object 2415h: current_limitation
	3.8.2 Object 2416h: speed_limitation

	3.9 Encoder adaptation
	3.9.1 Overview
	3.9.2 Description of objects
	3.9.2.1 Object 2024h: encoder_x2a_data_field
	3.9.2.2 Object 2026h: encoder_x2b_data_field
	3.9.2.3 Object 2025h: encoder_x10_data_field
	3.9.2.4 Object 202Ch: max_comm_enc_pos_enc_difference

	3.10 Master frequency output
	3.10.1 Overview
	3.10.2 Description of objects
	3.10.2.1 Object 201Ah: encoder_emulation_data
	3.10.2.2 Object 2028h: encoder_emulation_resolution

	3.11 Setpoint / actual value selection
	3.11.1 Overview
	3.11.2 Description of objects
	3.11.2.1 Object 201Fh: commutation_encoder_select
	3.11.2.2 Object 2021h: position_encoder_selection
	3.11.2.3 Object 2022h: synchronisation_encoder_selection
	3.11.2.4 Object 202Fh: synchronisation_selector_data
	3.11.2.5 Object 2023h: synchronisation_filter_time

	3.12 Analogue inputs
	3.12.1 Overview
	3.12.2 Description of objects
	3.12.2.1 Object 2400h: analog_input_voltage
	3.12.2.2 Object 2401h: analog_input_offset

	3.13 Digital inputs and outputs
	3.13.1 Overview
	3.13.2 Description of objects
	3.13.2.1 Object 60FDh: digital_inputs
	3.13.2.2 Object 60FEh: digital_outputs
	3.13.2.3 Object 2420h: digital_output_state_mapping

	3.14 Limit switch / Reference switch
	3.14.1 Overview
	3.14.2 Description of objects
	3.14.2.1 Object 6510h_11h: limit_switch_polarity
	3.14.2.2 Object 6510h_12h: limit_switch_selector
	3.14.2.3 Object 6510h_15h: limit_switch_deceleration
	3.14.2.4 Object 6510h_14h: homing_switch_polarity
	3.14.2.5 Object 6510h_13h: homing_switch_selector

	3.15 Position capturing (Sampling)
	3.15.1 Overview
	3.15.2 Description of objects
	3.15.2.1 Object 204Ah: sample_data

	3.16 Brake control
	3.16.1 Overview
	3.16.2 Description of objects
	3.16.2.1 Object 6510h_18h: brake_delay_time

	3.17 Device information
	3.17.1 Description of objects
	3.17.1.1 Object 1000h: device_type
	3.17.1.2 Object 1008h: manufacturer_device_name
	3.17.1.3 Object 1009h: manufacturer_hardware_version
	3.17.1.4 Object 100Ah: manufacturer_software_version
	3.17.1.5 Object 1018h: identity_object
	3.17.1.6 Object 6510h_A0h: drive_serial_number
	3.17.1.7 Object 6510h_A1h: drive_type
	3.17.1.8 Object 6510h_A9h: firmware_main_version
	3.17.1.9 Object 6510h_AAh: firmware_custom_version
	3.17.1.10 Object 6510h_ADh: km_release
	3.17.1.11 Object 6510h_ACh: firmware_type
	3.17.1.12 Object 6510h_B0h: cycletime_current_controller
	3.17.1.13 Object 6510h_B1h: cycletime_velocity_controller
	3.17.1.14 Object 6510h_B2h: cycletime_position_controller
	3.17.1.15 Object 6510h_B3h: cycletime_trajectory_generator
	3.17.1.16 Object 6510h_C0h: commissioning_state
	3.17.1.17 Object 20FDh: user_device_name

	3.18 Error management
	3.18.1 Overview
	3.18.2 Description of objects
	3.18.2.1 Object 2100h: error_management
	3.18.2.2 Object 200Fh: last_warning_code

	4 Device Control
	4.1 Overview
	4.2 State Machine
	4.2.1 State diagram: States
	4.2.2 State diagram: State transitions

	4.3 controlword
	4.4 Reading the servo drive status
	4.5 Statuswords
	4.5.1 Object 6041h: statusword
	4.5.2 Object 2000h: manufacturer_statuswords
	4.5.3 Object 2005h: manufacturer_status_masks
	4.5.4 Object 200Ah: manufacturer_status_invert
	4.5.5 Object 2001h: manufacturer_warnings
	4.5.6 Object 2006h: manufacturer_warning_masks

	4.6 Description of further objects
	4.6.1 Object 605Bh: shutdown_option_code
	4.6.2 Object 605Ch: disable_operation_option_code
	4.6.3 Object 605Ah: quick_stop_option_code
	4.6.4 Object 605Eh: fault_reaction_option_code

	5 Operating modes
	5.1 Setting the operating mode
	5.1.1 Overview
	5.1.2 Description of objects
	5.1.2.1 Object 6060h: modes_of_operation
	5.1.2.2 Object 6061h: modes_of_operation_display

	5.2 Homing Mode
	5.2.1 Overview
	5.2.2 Description of objects
	5.2.2.1 Important objects in other sections
	5.2.2.2 Object 607Ch: home_offset
	5.2.2.3 Object 6098h: homing_method
	5.2.2.4 Object 6099h: homing_speeds
	5.2.2.5 Object 609Ah: homing_acceleration
	5.2.2.6 Object 2045h: homing_timeout

	5.2.3 Homing sequences
	5.2.3.1 Methods -17 and -18: Stop
	5.2.3.2 Methods -1 and -2: stop with index pulse evaluation
	5.2.3.3 Methods 17 and 18: positive and negative limit switch
	5.2.3.4 Methods 1 and 2: positive and negative limit switch with index pulse evaluation
	5.2.3.5 Methods 23 and 27: reference switch
	5.2.3.6 Methods 7 and 11: reference switch and index pulse evaluation
	5.2.3.7 Methods -23 and -27: homing run (positive/negative) to the reference switch
	5.2.3.8 Methods 32 and 33: homing to the index pulse
	5.2.3.9 Method 34: homing to the current position

	5.2.4 Homing control

	5.3 Profile Position Mode
	5.3.1 Overview
	5.3.2 Functional description
	5.3.3 Description of objects
	5.3.3.1 Important objects in other sections
	5.3.3.2 Object 607Ah: target_position
	5.3.3.3 Object 6081h: profile_velocity
	5.3.3.4 Object 6082h: end_velocity
	5.3.3.5 Object 6083h: profile_acceleration
	5.3.3.6 Object 6084h: profile_deceleration
	5.3.3.7 Object 6085h: quick_stop_deceleration
	5.3.3.8 Object 6086h: motion_profile_type

	5.4 Interpolated Position Mode
	5.4.1 Overview
	5.4.2 Functional description
	5.4.3 Description of objects
	5.4.3.1 Important objects in other sections
	5.4.3.2 Object 60C0h: interpolation_submode_select
	5.4.3.3 Object 60C1h: interpolation_data_record
	5.4.3.4 Object 60C2h: interpolation_time_period
	5.4.3.5 Object 60C3h: interpolation_sync_definition
	5.4.3.6 Object 60C4h: interpolation_data_configuration
	5.4.3.7 Object 1006h: communication_cycle_period

	5.5 Cyclic Synchronous Position Mode
	5.5.1 Overview
	5.5.2 Description of objects
	5.5.2.1 Important objects in other sections

	5.6 Profile Velocity Mode
	5.6.1 Overview
	5.6.2 Description of objects
	5.6.2.1 Important objects in other sections
	5.6.2.2 Object 6069h: velocity_sensor_actual_value
	5.6.2.3 Object 606Ah: sensor_selection_code
	5.6.2.4 Object 606Bh: velocity_demand_value
	5.6.2.5 Object 202Eh: velocity_demand_sync_value
	5.6.2.6 Object 606Ch: velocity_actual_value
	5.6.2.7 Object 2074h: velocity_actual_value_filtered
	5.6.2.8 Object 606Dh: velocity_window
	5.6.2.9 Object 606Eh: velocity_window_time
	5.6.2.10 Object 606Fh: velocity_threshold
	5.6.2.11 Object 6070h: velocity_threshold_time
	5.6.2.12 Object 6080h: max_motor_speed
	5.6.2.13 Object 60FFh: target_velocity
	5.6.2.14 Speed ramps

	5.7 Profile Torque Mode
	5.7.1 Overview
	5.7.2 Description of objects
	5.7.2.1 Important objects from other sections
	5.7.2.2 Object 6071h: target_torque
	5.7.2.3 Object 6072h: max_torque
	5.7.2.4 Object 6074h: torque_demand_value
	5.7.2.5 Object 6076h: motor_rated_torque
	5.7.2.6 Object 6077h: torque_actual_value
	5.7.2.7 Object 6078h: current_actual_value
	5.7.2.8 Object 6079h: dc_link_circuit_voltage
	5.7.2.9 Object 6087h: torque_slope
	5.7.2.10 Object 6088h: torque_profile_type

	6 Detailed description of the CANopen protocol
	6.1 Introduction
	6.2 Access via SDO
	6.2.1 SDO sequences for reading and writing
	6.2.2 SDO error response (abort codes)
	6.2.3 Simulation of SDO accesses

	6.3 Access via PDO
	6.3.1 Description of objects
	6.3.2 Objects for PDO configuration
	6.3.3 Activation of PDOs

	6.4 EMERGENCY message
	6.4.1 Overview
	6.4.2 Structure of the EMERGENCY message
	6.4.3 Description of objects

	6.5 SYNC message
	6.6 Network Management (NMT service)
	6.7 Bootup
	6.7.1 Overview
	6.7.2 Structure of the Bootup message

	6.8 Heartbeat (Error Control Protocol)
	6.8.1 Overview
	6.8.2 Structure of the Heartbeat message
	6.8.3 Description of objects

	6.9 Nodeguarding (Error Control Protocol)
	6.9.1 Overview
	6.9.2 Structure of the Nodeguarding messages
	6.9.3 Description of objects
	6.9.3.1 Object 100Ch: guard_time
	6.9.3.2 Object 100Dh: life_time_factor

	6.10 Table of identifiers

	7 Appendix
	7.1 CANopen
	7.2 Characteristics of the CAN interface
	7.3 Error codes of the EMERGENCY message

